ebiten/audio/internal/oboe/oboe_flowgraph_FlowGraphNode_android.h

449 lines
13 KiB
C
Raw Permalink Normal View History

/*
* Copyright 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* FlowGraph.h
*
* Processing node and ports that can be used in a simple data flow graph.
* This was designed to work with audio but could be used for other
* types of data.
*/
#ifndef FLOWGRAPH_FLOW_GRAPH_NODE_H
#define FLOWGRAPH_FLOW_GRAPH_NODE_H
#include <cassert>
#include <cstring>
#include <math.h>
#include <memory>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <vector>
// TODO Move these classes into separate files.
// TODO Review use of raw pointers for connect(). Maybe use smart pointers but need to avoid
// run-time deallocation in audio thread.
// Set this to 1 if using it inside the Android framework.
// This code is kept here so that it can be moved easily between Oboe and AAudio.
#ifndef FLOWGRAPH_ANDROID_INTERNAL
#define FLOWGRAPH_ANDROID_INTERNAL 0
#endif
// Set this to a name that will prevent AAudio from calling into Oboe.
// AAudio and Oboe both use a version of this flowgraph package.
// There was a problem in the unit tests where AAudio would call a constructor
// in AAudio and then call a destructor in Oboe! That caused memory corruption.
// For more details, see Issue #930.
#ifndef FLOWGRAPH_OUTER_NAMESPACE
#define FLOWGRAPH_OUTER_NAMESPACE oboe
#endif
namespace FLOWGRAPH_OUTER_NAMESPACE {
namespace flowgraph {
// Default block size that can be overridden when the FlowGraphPortFloat is created.
// If it is too small then we will have too much overhead from switching between nodes.
// If it is too high then we will thrash the caches.
constexpr int kDefaultBufferSize = 8; // arbitrary
class FlowGraphPort;
class FlowGraphPortFloatInput;
/***************************************************************************/
/**
* Base class for all nodes in the flowgraph.
*/
class FlowGraphNode {
public:
FlowGraphNode() {}
virtual ~FlowGraphNode() = default;
/**
* Read from the input ports,
* generate multiple frames of data then write the results to the output ports.
*
* @param numFrames maximum number of frames requested for processing
* @return number of frames actually processed
*/
virtual int32_t onProcess(int32_t numFrames) = 0;
/**
* If the callCount is at or after the previous callCount then call
* pullData on all of the upstreamNodes.
* Then call onProcess().
* This prevents infinite recursion in case of cyclic graphs.
* It also prevents nodes upstream from a branch from being executed twice.
*
* @param callCount
* @param numFrames
* @return number of frames valid
*/
int32_t pullData(int32_t numFrames, int64_t callCount);
/**
* Recursively reset all the nodes in the graph, starting from a Sink.
*
* This must not be called at the same time as pullData!
*/
void pullReset();
/**
* Reset framePosition counters.
*/
virtual void reset();
void addInputPort(FlowGraphPort &port) {
mInputPorts.push_back(port);
}
bool isDataPulledAutomatically() const {
return mDataPulledAutomatically;
}
/**
* Set true if you want the data pulled through the graph automatically.
* This is the default.
*
* Set false if you want to pull the data from the input ports in the onProcess() method.
* You might do this, for example, in a sample rate converting node.
*
* @param automatic
*/
void setDataPulledAutomatically(bool automatic) {
mDataPulledAutomatically = automatic;
}
virtual const char *getName() {
return "FlowGraph";
}
int64_t getLastCallCount() {
return mLastCallCount;
}
protected:
static constexpr int64_t kInitialCallCount = -1;
int64_t mLastCallCount = kInitialCallCount;
std::vector<std::reference_wrapper<FlowGraphPort>> mInputPorts;
private:
bool mDataPulledAutomatically = true;
bool mBlockRecursion = false;
int32_t mLastFrameCount = 0;
};
/***************************************************************************/
/**
* This is a connector that allows data to flow between modules.
*
* The ports are the primary means of interacting with a module.
* So they are generally declared as public.
*
*/
class FlowGraphPort {
public:
FlowGraphPort(FlowGraphNode &parent, int32_t samplesPerFrame)
: mContainingNode(parent)
, mSamplesPerFrame(samplesPerFrame) {
}
virtual ~FlowGraphPort() = default;
// Ports are often declared public. So let's make them non-copyable.
FlowGraphPort(const FlowGraphPort&) = delete;
FlowGraphPort& operator=(const FlowGraphPort&) = delete;
int32_t getSamplesPerFrame() const {
return mSamplesPerFrame;
}
virtual int32_t pullData(int64_t framePosition, int32_t numFrames) = 0;
virtual void pullReset() {}
protected:
FlowGraphNode &mContainingNode;
private:
const int32_t mSamplesPerFrame = 1;
};
/***************************************************************************/
/**
* This port contains a 32-bit float buffer that can contain several frames of data.
* Processing the data in a block improves performance.
*
* The size is framesPerBuffer * samplesPerFrame).
*/
class FlowGraphPortFloat : public FlowGraphPort {
public:
FlowGraphPortFloat(FlowGraphNode &parent,
int32_t samplesPerFrame,
int32_t framesPerBuffer = kDefaultBufferSize
);
virtual ~FlowGraphPortFloat() = default;
int32_t getFramesPerBuffer() const {
return mFramesPerBuffer;
}
protected:
/**
* @return buffer internal to the port or from a connected port
*/
virtual float *getBuffer() {
return mBuffer.get();
}
private:
const int32_t mFramesPerBuffer = 1;
std::unique_ptr<float[]> mBuffer; // allocated in constructor
};
/***************************************************************************/
/**
* The results of a node's processing are stored in the buffers of the output ports.
*/
class FlowGraphPortFloatOutput : public FlowGraphPortFloat {
public:
FlowGraphPortFloatOutput(FlowGraphNode &parent, int32_t samplesPerFrame)
: FlowGraphPortFloat(parent, samplesPerFrame) {
}
virtual ~FlowGraphPortFloatOutput() = default;
using FlowGraphPortFloat::getBuffer;
/**
* Connect to the input of another module.
* An input port can only have one connection.
* An output port can have multiple connections.
* If you connect a second output port to an input port
* then it overwrites the previous connection.
*
* This not thread safe. Do not modify the graph topology from another thread while running.
* Also do not delete a module while it is connected to another port if the graph is running.
*/
void connect(FlowGraphPortFloatInput *port);
/**
* Disconnect from the input of another module.
* This not thread safe.
*/
void disconnect(FlowGraphPortFloatInput *port);
/**
* Call the parent module's onProcess() method.
* That may pull data from its inputs and recursively
* process the entire graph.
* @return number of frames actually pulled
*/
int32_t pullData(int64_t framePosition, int32_t numFrames) override;
void pullReset() override;
};
/***************************************************************************/
/**
* An input port for streaming audio data.
* You can set a value that will be used for processing.
* If you connect an output port to this port then its value will be used instead.
*/
class FlowGraphPortFloatInput : public FlowGraphPortFloat {
public:
FlowGraphPortFloatInput(FlowGraphNode &parent, int32_t samplesPerFrame)
: FlowGraphPortFloat(parent, samplesPerFrame) {
// Add to parent so it can pull data from each input.
parent.addInputPort(*this);
}
virtual ~FlowGraphPortFloatInput() = default;
/**
* If connected to an output port then this will return
* that output ports buffers.
* If not connected then it returns the input ports own buffer
* which can be loaded using setValue().
*/
float *getBuffer() override;
/**
* Write every value of the float buffer.
* This value will be ignored if an output port is connected
* to this port.
*/
void setValue(float value) {
int numFloats = kDefaultBufferSize * getSamplesPerFrame();
float *buffer = getBuffer();
for (int i = 0; i < numFloats; i++) {
*buffer++ = value;
}
}
/**
* Connect to the output of another module.
* An input port can only have one connection.
* An output port can have multiple connections.
* This not thread safe.
*/
void connect(FlowGraphPortFloatOutput *port) {
assert(getSamplesPerFrame() == port->getSamplesPerFrame());
mConnected = port;
}
void disconnect(FlowGraphPortFloatOutput *port) {
assert(mConnected == port);
(void) port;
mConnected = nullptr;
}
void disconnect() {
mConnected = nullptr;
}
/**
* Pull data from any output port that is connected.
*/
int32_t pullData(int64_t framePosition, int32_t numFrames) override;
void pullReset() override;
private:
FlowGraphPortFloatOutput *mConnected = nullptr;
};
/***************************************************************************/
/**
* Base class for an edge node in a graph that has no upstream nodes.
* It outputs data but does not consume data.
* By default, it will read its data from an external buffer.
*/
class FlowGraphSource : public FlowGraphNode {
public:
explicit FlowGraphSource(int32_t channelCount)
: output(*this, channelCount) {
}
virtual ~FlowGraphSource() = default;
FlowGraphPortFloatOutput output;
};
/***************************************************************************/
/**
* Base class for an edge node in a graph that has no upstream nodes.
* It outputs data but does not consume data.
* By default, it will read its data from an external buffer.
*/
class FlowGraphSourceBuffered : public FlowGraphSource {
public:
explicit FlowGraphSourceBuffered(int32_t channelCount)
: FlowGraphSource(channelCount) {}
virtual ~FlowGraphSourceBuffered() = default;
/**
* Specify buffer that the node will read from.
*
* @param data TODO Consider using std::shared_ptr.
* @param numFrames
*/
void setData(const void *data, int32_t numFrames) {
mData = data;
mSizeInFrames = numFrames;
mFrameIndex = 0;
}
protected:
const void *mData = nullptr;
int32_t mSizeInFrames = 0; // number of frames in mData
int32_t mFrameIndex = 0; // index of next frame to be processed
};
/***************************************************************************/
/**
* Base class for an edge node in a graph that has no downstream nodes.
* It consumes data but does not output data.
* This graph will be executed when data is read() from this node
* by pulling data from upstream nodes.
*/
class FlowGraphSink : public FlowGraphNode {
public:
explicit FlowGraphSink(int32_t channelCount)
: input(*this, channelCount) {
}
virtual ~FlowGraphSink() = default;
FlowGraphPortFloatInput input;
/**
* Dummy processor. The work happens in the read() method.
*
* @param numFrames
* @return number of frames actually processed
*/
int32_t onProcess(int32_t numFrames) override {
return numFrames;
}
virtual int32_t read(void *data, int32_t numFrames) = 0;
protected:
/**
* Pull data through the graph using this nodes last callCount.
* @param numFrames
* @return
*/
int32_t pullData(int32_t numFrames);
};
/***************************************************************************/
/**
* Base class for a node that has an input and an output with the same number of channels.
* This may include traditional filters, eg. FIR, but also include
* any processing node that converts input to output.
*/
class FlowGraphFilter : public FlowGraphNode {
public:
explicit FlowGraphFilter(int32_t channelCount)
: input(*this, channelCount)
, output(*this, channelCount) {
}
virtual ~FlowGraphFilter() = default;
FlowGraphPortFloatInput input;
FlowGraphPortFloatOutput output;
};
} /* namespace flowgraph */
} /* namespace FLOWGRAPH_OUTER_NAMESPACE */
#endif /* FLOWGRAPH_FLOW_GRAPH_NODE_H */