1
0
mirror of https://github.com/hajimehoshi/ebiten.git synced 2025-01-22 00:42:02 +01:00
ebiten/internal/graphicsdriver/metal/mtl/mtl_test.go

181 lines
4.9 KiB
Go
Raw Normal View History

2018-11-12 16:00:10 +01:00
// Copyright 2018 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build darwin
package mtl_test
import (
"fmt"
"image"
"image/color"
"image/png"
"os"
"path/filepath"
"testing"
"unsafe"
"golang.org/x/image/math/f32"
2020-10-03 19:35:13 +02:00
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver/metal/mtl"
2018-11-12 16:00:10 +01:00
)
func Disabled_TestRenderTriangle(t *testing.T) {
device, err := mtl.CreateSystemDefaultDevice()
if err != nil {
t.Fatal(err)
}
// Create a render pipeline state.
const source = `#include <metal_stdlib>
using namespace metal;
struct Vertex {
float4 position [[position]];
float4 color;
};
vertex Vertex VertexShader(
uint vertexID [[vertex_id]],
device Vertex * vertices [[buffer(0)]]
) {
return vertices[vertexID];
}
fragment float4 FragmentShader(Vertex in [[stage_in]]) {
return in.color;
}
`
lib, err := device.MakeLibrary(source, mtl.CompileOptions{})
if err != nil {
t.Fatal(err)
}
vs, err := lib.MakeFunction("VertexShader")
if err != nil {
t.Fatal(err)
}
fs, err := lib.MakeFunction("FragmentShader")
if err != nil {
t.Fatal(err)
}
var rpld mtl.RenderPipelineDescriptor
rpld.VertexFunction = vs
rpld.FragmentFunction = fs
rpld.ColorAttachments[0].PixelFormat = mtl.PixelFormatRGBA8UNorm
rps, err := device.MakeRenderPipelineState(rpld)
if err != nil {
t.Fatal(err)
}
// Create a vertex buffer.
type Vertex struct {
Position f32.Vec4
Color f32.Vec4
}
vertexData := [...]Vertex{
{f32.Vec4{+0.00, +0.75, 0, 1}, f32.Vec4{1, 0, 0, 1}},
{f32.Vec4{-0.75, -0.75, 0, 1}, f32.Vec4{0, 1, 0, 1}},
{f32.Vec4{+0.75, -0.75, 0, 1}, f32.Vec4{0, 0, 1, 1}},
}
vertexBuffer := device.MakeBufferWithBytes(unsafe.Pointer(&vertexData[0]), unsafe.Sizeof(vertexData), mtl.ResourceStorageModeManaged)
2018-11-12 16:00:10 +01:00
// Create an output texture to render into.
td := mtl.TextureDescriptor{
TextureType: mtl.TextureType2D,
2018-11-12 16:00:10 +01:00
PixelFormat: mtl.PixelFormatRGBA8UNorm,
Width: 512,
Height: 512,
StorageMode: mtl.StorageModeManaged,
}
texture := device.MakeTexture(td)
cq := device.MakeCommandQueue()
cb := cq.MakeCommandBuffer()
// Encode all render commands.
var rpd mtl.RenderPassDescriptor
rpd.ColorAttachments[0].LoadAction = mtl.LoadActionClear
rpd.ColorAttachments[0].StoreAction = mtl.StoreActionStore
rpd.ColorAttachments[0].ClearColor = mtl.ClearColor{Red: 0.35, Green: 0.65, Blue: 0.85, Alpha: 1}
rpd.ColorAttachments[0].Texture = texture
rce := cb.MakeRenderCommandEncoder(rpd)
rce.SetRenderPipelineState(rps)
rce.SetVertexBuffer(vertexBuffer, 0, 0)
rce.DrawPrimitives(mtl.PrimitiveTypeTriangle, 0, 3)
rce.EndEncoding()
// Encode all blit commands.
bce := cb.MakeBlitCommandEncoder()
bce.Synchronize(texture)
bce.EndEncoding()
cb.Commit()
cb.WaitUntilCompleted()
// Read pixels from output texture into an image.
got := image.NewNRGBA(image.Rect(0, 0, texture.Width(), texture.Height()))
bytesPerRow := 4 * texture.Width()
region := mtl.RegionMake2D(0, 0, texture.Width(), texture.Height())
2018-11-12 16:00:10 +01:00
texture.GetBytes(&got.Pix[0], uintptr(bytesPerRow), region, 0)
// TODO: Embed this file?
want, err := readPNG(filepath.Join("testdata", "triangle.png"))
if err != nil {
t.Fatal(err)
}
if err := imageEq(got, want); err != nil {
t.Errorf("got image != want: %v", err)
}
}
func readPNG(name string) (image.Image, error) {
f, err := os.Open(name)
if err != nil {
return nil, err
}
defer f.Close()
return png.Decode(f)
}
// imageEq reports whether images m, n are considered equivalent. Two images are considered
// equivalent if they have same bounds, and all pixel colors are within a small margin.
func imageEq(m, n image.Image) error {
if m.Bounds() != n.Bounds() {
return fmt.Errorf("bounds don't match: %v != %v", m.Bounds(), n.Bounds())
}
for y := m.Bounds().Min.Y; y < m.Bounds().Max.Y; y++ {
for x := m.Bounds().Min.X; x < m.Bounds().Max.X; x++ {
c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA)
d := color.NRGBAModel.Convert(n.At(x, y)).(color.NRGBA)
if !colorEq(c, d) {
return fmt.Errorf("pixel (%v, %v) doesn't match: %+v != %+v", x, y, c, d)
}
}
}
return nil
}
// colorEq reports whether colors c, d are considered equivalent, i.e., within a small margin.
func colorEq(c, d color.NRGBA) bool {
return eqEpsilon(c.R, d.R) && eqEpsilon(c.G, d.G) && eqEpsilon(c.B, d.B) && eqEpsilon(c.A, d.A)
}
// eqEpsilon reports whether a and b are within epsilon of each other.
func eqEpsilon(a, b uint8) bool {
const epsilon = 1
return uint16(a)-uint16(b) <= epsilon || uint16(b)-uint16(a) <= epsilon
}