ebiten/vector/internal/math/triangulate.go

141 lines
3.8 KiB
Go
Raw Normal View History

// Copyright 2019 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package math
import (
"fmt"
)
func cross(v0, v1 Vector) float32 {
return v0.X*v1.Y - v0.Y*v1.X
}
func triangleCross(pt0, pt1, pt2 Point) float32 {
return cross(Vector{pt1.X - pt0.X, pt1.Y - pt0.Y}, Vector{pt2.X - pt1.X, pt2.Y - pt1.Y})
}
func adjacentIndices(indices []uint16, idx int) (uint16, uint16, uint16) {
return indices[(idx+len(indices)-1)%len(indices)], indices[idx], indices[(idx+1)%len(indices)]
}
func InTriangle(pt, pt0, pt1, pt2 Point) bool {
c0 := cross(Vector{pt.X - pt0.X, pt.Y - pt0.Y}, Vector{pt1.X - pt0.X, pt1.Y - pt0.Y})
c1 := cross(Vector{pt.X - pt1.X, pt.Y - pt1.Y}, Vector{pt2.X - pt1.X, pt2.Y - pt1.Y})
c2 := cross(Vector{pt.X - pt2.X, pt.Y - pt2.Y}, Vector{pt0.X - pt2.X, pt0.Y - pt2.Y})
return (c0 < 0 && c1 < 0 && c2 < 0) || (c0 > 0 && c1 > 0 && c2 > 0)
}
func Triangulate(pts []Point) []uint16 {
if len(pts) < 3 {
return nil
}
var currentIndices []uint16
// Remove duplicated points
dup:
for i := range pts {
for j := 0; j < i; j++ {
if pts[i] == pts[j] {
continue dup
}
}
currentIndices = append(currentIndices, uint16(i))
}
if len(currentIndices) < 3 {
return nil
}
// Determine the direction of the polygon from the upper-left point.
var upperLeft int
for _, i := range currentIndices {
if pts[upperLeft].X < pts[i].X {
upperLeft = int(i)
}
if pts[upperLeft].X == pts[i].X && pts[upperLeft].Y < pts[i].Y {
upperLeft = int(i)
}
}
i0, i1, i2 := adjacentIndices(currentIndices, upperLeft)
pt0 := pts[i0]
pt1 := pts[i1]
pt2 := pts[i2]
clockwise := triangleCross(pt0, pt1, pt2) < 0
var indices []uint16
// Triangulation by Ear Clipping.
// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
for len(currentIndices) >= 3 {
// Calculate cross-products and remove unneeded vertices.
cs := make([]float32, len(currentIndices))
idx := -1
for i := range currentIndices {
i0, i1, i2 := adjacentIndices(currentIndices, i)
pt0 := pts[i0]
pt1 := pts[i1]
pt2 := pts[i2]
c := triangleCross(pt0, pt1, pt2)
if c == 0 {
idx = i
break
}
cs[i] = c
}
if idx != -1 {
currentIndices = append(currentIndices[:idx], currentIndices[idx+1:]...)
continue
}
idx = -1
index:
for i := range currentIndices {
i0, i1, i2 := adjacentIndices(currentIndices, i)
pt0 := pts[i0]
pt1 := pts[i1]
pt2 := pts[i2]
c := cs[i]
if c == 0 {
panic("math: cross value must not be 0")
}
if c < 0 && !clockwise || c > 0 && clockwise {
// The angle is more than 180 degrees. This is not an ear.
continue
}
for j := range currentIndices {
if l := len(currentIndices); j == (i+l-1)%l || j == i || j == (i+1)%l {
continue
}
if InTriangle(pts[currentIndices[j]], pt0, pt1, pt2) {
// If the triangle includes another point, the triangle is not an ear.
continue index
}
}
// The angle is less than 180 degrees. This is an ear.
idx = i
break
}
if idx < 0 {
// TODO: This happens when there is self-crossing.
panic(fmt.Sprintf("math: there is no ear in the polygon: %v", pts))
}
i0, i1, i2 := adjacentIndices(currentIndices, idx)
indices = append(indices, i0, i1, i2)
currentIndices = append(currentIndices[:idx], currentIndices[idx+1:]...)
}
return indices
}