internal/graphicsdriver/opengl: remove the built-in shaders

Updates #2369
This commit is contained in:
Hajime Hoshi 2022-10-02 21:26:13 +09:00
parent 5f7db485f2
commit 033997d928
3 changed files with 87 additions and 446 deletions

View File

@ -1,251 +0,0 @@
// Copyright 2014 Hajime Hoshi
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package opengl
import (
"fmt"
"regexp"
"strings"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
)
// glslReservedKeywords is a set of reserved keywords that cannot be used as an indentifier on some environments.
// See https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf.
var glslReservedKeywords = map[string]struct{}{
"common": {}, "partition": {}, "active": {},
"asm": {},
"class": {}, "union": {}, "enum": {}, "typedef": {}, "template": {}, "this": {},
"resource": {},
"goto": {},
"inline": {}, "noinline": {}, "public": {}, "static": {}, "extern": {}, "external": {}, "interface": {},
"long": {}, "short": {}, "half": {}, "fixed": {}, "unsigned": {}, "superp": {},
"input": {}, "output": {},
"hvec2": {}, "hvec3": {}, "hvec4": {}, "fvec2": {}, "fvec3": {}, "fvec4": {},
"filter": {},
"sizeof": {}, "cast": {},
"namespace": {}, "using": {},
"sampler3DRect": {},
}
var glslIdentifier = regexp.MustCompile(`[_a-zA-Z][_a-zA-Z0-9]*`)
func checkGLSL(src string) {
for _, l := range strings.Split(src, "\n") {
if strings.Contains(l, "//") {
l = l[:strings.Index(l, "//")]
}
for _, token := range glslIdentifier.FindAllString(l, -1) {
if _, ok := glslReservedKeywords[token]; ok {
panic(fmt.Sprintf("opengl: %q is a reserved keyword", token))
}
}
}
}
func vertexShaderStr() string {
src := shaderStrVertex
checkGLSL(src)
return src
}
func fragmentShaderStr(useColorM bool, filter graphicsdriver.Filter, address graphicsdriver.Address) string {
replaces := map[string]string{
"{{.AddressClampToZero}}": fmt.Sprintf("%d", graphicsdriver.AddressClampToZero),
"{{.AddressRepeat}}": fmt.Sprintf("%d", graphicsdriver.AddressRepeat),
"{{.AddressUnsafe}}": fmt.Sprintf("%d", graphicsdriver.AddressUnsafe),
}
src := shaderStrFragment
for k, v := range replaces {
src = strings.Replace(src, k, v, -1)
}
var defs []string
if useColorM {
defs = append(defs, "#define USE_COLOR_MATRIX")
}
switch filter {
case graphicsdriver.FilterNearest:
defs = append(defs, "#define FILTER_NEAREST")
case graphicsdriver.FilterLinear:
defs = append(defs, "#define FILTER_LINEAR")
default:
panic(fmt.Sprintf("opengl: invalid filter: %d", filter))
}
switch address {
case graphicsdriver.AddressClampToZero:
defs = append(defs, "#define ADDRESS_CLAMP_TO_ZERO")
case graphicsdriver.AddressRepeat:
defs = append(defs, "#define ADDRESS_REPEAT")
case graphicsdriver.AddressUnsafe:
defs = append(defs, "#define ADDRESS_UNSAFE")
default:
panic(fmt.Sprintf("opengl: invalid address: %d", address))
}
src = strings.Replace(src, "{{.Definitions}}", strings.Join(defs, "\n"), -1)
checkGLSL(src)
return src
}
const (
shaderStrVertex = `
uniform vec2 viewport_size;
attribute vec2 A0;
attribute vec2 A1;
attribute vec4 A2;
varying vec2 varying_tex;
varying vec4 varying_color_scale;
void main(void) {
varying_tex = A1;
varying_color_scale = A2;
mat4 projection_matrix = mat4(
vec4(2.0 / viewport_size.x, 0, 0, 0),
vec4(0, 2.0 / viewport_size.y, 0, 0),
vec4(0, 0, 1, 0),
vec4(-1, -1, 0, 1)
);
gl_Position = projection_matrix * vec4(A0, 0, 1);
}
`
shaderStrFragment = `
#if defined(GL_ES)
precision mediump float;
#else
#define lowp
#define mediump
#define highp
#endif
{{.Definitions}}
uniform sampler2D T0;
uniform vec4 source_region;
#if defined(USE_COLOR_MATRIX)
uniform mat4 color_matrix_body;
uniform vec4 color_matrix_translation;
#endif
uniform highp vec2 source_size;
varying highp vec2 varying_tex;
varying highp vec4 varying_color_scale;
highp vec2 adjustTexelByAddress(highp vec2 p, highp vec4 source_region) {
#if defined(ADDRESS_CLAMP_TO_ZERO)
return p;
#endif
#if defined(ADDRESS_REPEAT)
highp vec2 o = vec2(source_region[0], source_region[1]);
highp vec2 size = vec2(source_region[2] - source_region[0], source_region[3] - source_region[1]);
return mod((p - o), size) + o;
#endif
#if defined(ADDRESS_UNSAFE)
return p;
#endif
}
void main(void) {
highp vec2 pos = varying_tex;
#if defined(FILTER_NEAREST)
vec4 color;
# if defined(ADDRESS_UNSAFE)
color = texture2D(T0, pos);
# else
pos = adjustTexelByAddress(pos, source_region);
if (source_region[0] <= pos.x &&
source_region[1] <= pos.y &&
pos.x < source_region[2] &&
pos.y < source_region[3]) {
color = texture2D(T0, pos);
} else {
color = vec4(0, 0, 0, 0);
}
# endif // defined(ADDRESS_UNSAFE)
#endif // defined(FILTER_NEAREST)
#if defined(FILTER_LINEAR)
vec4 color;
highp vec2 texel_size = 1.0 / source_size;
// Shift 1/512 [texel] to avoid the tie-breaking issue (#1212).
// As all the vertex positions are aligned to 1/16 [pixel], this shiting should work in most cases.
highp vec2 p0 = pos - (texel_size) / 2.0 + (texel_size / 512.0);
highp vec2 p1 = pos + (texel_size) / 2.0 + (texel_size / 512.0);
# if !defined(ADDRESS_UNSAFE)
p0 = adjustTexelByAddress(p0, source_region);
p1 = adjustTexelByAddress(p1, source_region);
# endif // defined(ADDRESS_UNSAFE)
vec4 c0 = texture2D(T0, p0);
vec4 c1 = texture2D(T0, vec2(p1.x, p0.y));
vec4 c2 = texture2D(T0, vec2(p0.x, p1.y));
vec4 c3 = texture2D(T0, p1);
# if !defined(ADDRESS_UNSAFE)
if (p0.x < source_region[0]) {
c0 = vec4(0, 0, 0, 0);
c2 = vec4(0, 0, 0, 0);
}
if (p0.y < source_region[1]) {
c0 = vec4(0, 0, 0, 0);
c1 = vec4(0, 0, 0, 0);
}
if (source_region[2] <= p1.x) {
c1 = vec4(0, 0, 0, 0);
c3 = vec4(0, 0, 0, 0);
}
if (source_region[3] <= p1.y) {
c2 = vec4(0, 0, 0, 0);
c3 = vec4(0, 0, 0, 0);
}
# endif // defined(ADDRESS_UNSAFE)
vec2 rate = fract(p0 * source_size);
color = mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y);
#endif // defined(FILTER_LINEAR)
# if defined(USE_COLOR_MATRIX)
// Un-premultiply alpha.
// When the alpha is 0, 1.0 - sign(alpha) is 1.0, which means division does nothing.
color.rgb /= color.a + (1.0 - sign(color.a));
// Apply the color matrix or scale.
color = (color_matrix_body * color) + color_matrix_translation;
// Premultiply alpha
color.rgb *= color.a;
// Apply color scale.
color *= varying_color_scale;
// Clamp the output.
color.rgb = min(color.rgb, color.a);
# else
// Apply color scale.
color *= varying_color_scale;
// No clamping needed as the color matrix shader is used then.
# endif // defined(USE_COLOR_MATRIX)
gl_FragColor = color;
}
`
)

View File

@ -181,6 +181,10 @@ func (g *Graphics) uniformVariableName(idx int) string {
} }
func (g *Graphics) DrawTriangles(dstID graphicsdriver.ImageID, srcIDs [graphics.ShaderImageCount]graphicsdriver.ImageID, offsets [graphics.ShaderImageCount - 1][2]float32, shaderID graphicsdriver.ShaderID, indexLen int, indexOffset int, mode graphicsdriver.CompositeMode, colorM graphicsdriver.ColorM, filter graphicsdriver.Filter, address graphicsdriver.Address, dstRegion, srcRegion graphicsdriver.Region, uniforms [][]float32, evenOdd bool) error { func (g *Graphics) DrawTriangles(dstID graphicsdriver.ImageID, srcIDs [graphics.ShaderImageCount]graphicsdriver.ImageID, offsets [graphics.ShaderImageCount - 1][2]float32, shaderID graphicsdriver.ShaderID, indexLen int, indexOffset int, mode graphicsdriver.CompositeMode, colorM graphicsdriver.ColorM, filter graphicsdriver.Filter, address graphicsdriver.Address, dstRegion, srcRegion graphicsdriver.Region, uniforms [][]float32, evenOdd bool) error {
if shaderID == graphicsdriver.InvalidShaderID {
return fmt.Errorf("opengl: shader ID is invalid")
}
destination := g.images[dstID] destination := g.images[dstID]
g.drawCalled = true g.drawCalled = true
@ -196,145 +200,95 @@ func (g *Graphics) DrawTriangles(dstID graphicsdriver.ImageID, srcIDs [graphics.
) )
g.context.blendFunc(mode) g.context.blendFunc(mode)
var program program shader := g.shaders[shaderID]
if shaderID == graphicsdriver.InvalidShaderID { program := shader.p
program = g.state.programs[programKey{
useColorM: !colorM.IsIdentity(),
filter: filter,
address: address,
}]
dw, dh := destination.framebufferSize() ulen := graphics.PreservedUniformVariablesCount + len(uniforms)
g.uniformVars = append(g.uniformVars, uniformVariable{ if cap(g.uniformVars) < ulen {
name: "viewport_size", g.uniformVars = make([]uniformVariable, ulen)
value: []float32{float32(dw), float32(dh)},
typ: shaderir.Type{Main: shaderir.Vec2},
}, uniformVariable{
name: "source_region",
value: []float32{
srcRegion.X,
srcRegion.Y,
srcRegion.X + srcRegion.Width,
srcRegion.Y + srcRegion.Height,
},
typ: shaderir.Type{Main: shaderir.Vec4},
})
if !colorM.IsIdentity() {
// ColorM's elements are immutable. It's OK to hold the reference without copying.
var esBody [16]float32
var esTranslate [4]float32
colorM.Elements(esBody[:], esTranslate[:])
g.uniformVars = append(g.uniformVars, uniformVariable{
name: "color_matrix_body",
value: esBody[:],
typ: shaderir.Type{Main: shaderir.Mat4},
}, uniformVariable{
name: "color_matrix_translation",
value: esTranslate[:],
typ: shaderir.Type{Main: shaderir.Vec4},
})
}
if filter != graphicsdriver.FilterNearest {
sw, sh := g.images[srcIDs[0]].framebufferSize()
g.uniformVars = append(g.uniformVars, uniformVariable{
name: "source_size",
value: []float32{float32(sw), float32(sh)},
typ: shaderir.Type{Main: shaderir.Vec2},
})
}
} else { } else {
shader := g.shaders[shaderID] g.uniformVars = g.uniformVars[:ulen]
program = shader.p }
ulen := graphics.PreservedUniformVariablesCount + len(uniforms)
if cap(g.uniformVars) < ulen {
g.uniformVars = make([]uniformVariable, ulen)
} else {
g.uniformVars = g.uniformVars[:ulen]
}
{
const idx = graphics.TextureDestinationSizeUniformVariableIndex
w, h := destination.framebufferSize()
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = []float32{float32(w), float32(h)}
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
sizes := make([]float32, 2*len(srcIDs))
for i, srcID := range srcIDs {
if img := g.images[srcID]; img != nil {
w, h := img.framebufferSize()
sizes[2*i] = float32(w)
sizes[2*i+1] = float32(h)
}
{
const idx = graphics.TextureDestinationSizeUniformVariableIndex
w, h := destination.framebufferSize()
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = []float32{float32(w), float32(h)}
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
sizes := make([]float32, 2*len(srcIDs))
for i, srcID := range srcIDs {
if img := g.images[srcID]; img != nil {
w, h := img.framebufferSize()
sizes[2*i] = float32(w)
sizes[2*i+1] = float32(h)
} }
const idx = graphics.TextureSourceSizesUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = sizes
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
dw, dh := destination.framebufferSize()
{
origin := []float32{float32(dstRegion.X) / float32(dw), float32(dstRegion.Y) / float32(dh)}
const idx = graphics.TextureDestinationRegionOriginUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = origin
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
size := []float32{float32(dstRegion.Width) / float32(dw), float32(dstRegion.Height) / float32(dh)}
const idx = graphics.TextureDestinationRegionSizeUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = size
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
voffsets := make([]float32, 2*len(offsets))
for i, o := range offsets {
voffsets[2*i] = o[0]
voffsets[2*i+1] = o[1]
}
const idx = graphics.TextureSourceOffsetsUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = voffsets
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
origin := []float32{float32(srcRegion.X), float32(srcRegion.Y)}
const idx = graphics.TextureSourceRegionOriginUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = origin
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
size := []float32{float32(srcRegion.Width), float32(srcRegion.Height)}
const idx = graphics.TextureSourceRegionSizeUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = size
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
const idx = graphics.ProjectionMatrixUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = []float32{
2 / float32(dw), 0, 0, 0,
0, 2 / float32(dh), 0, 0,
0, 0, 1, 0,
-1, -1, 0, 1,
}
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
for i, v := range uniforms {
const offset = graphics.PreservedUniformVariablesCount
g.uniformVars[i+offset].name = g.uniformVariableName(i + offset)
g.uniformVars[i+offset].value = v
g.uniformVars[i+offset].typ = shader.ir.Uniforms[i+offset]
} }
const idx = graphics.TextureSourceSizesUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = sizes
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
dw, dh := destination.framebufferSize()
{
origin := []float32{float32(dstRegion.X) / float32(dw), float32(dstRegion.Y) / float32(dh)}
const idx = graphics.TextureDestinationRegionOriginUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = origin
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
size := []float32{float32(dstRegion.Width) / float32(dw), float32(dstRegion.Height) / float32(dh)}
const idx = graphics.TextureDestinationRegionSizeUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = size
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
voffsets := make([]float32, 2*len(offsets))
for i, o := range offsets {
voffsets[2*i] = o[0]
voffsets[2*i+1] = o[1]
}
const idx = graphics.TextureSourceOffsetsUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = voffsets
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
origin := []float32{float32(srcRegion.X), float32(srcRegion.Y)}
const idx = graphics.TextureSourceRegionOriginUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = origin
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
size := []float32{float32(srcRegion.Width), float32(srcRegion.Height)}
const idx = graphics.TextureSourceRegionSizeUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = size
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
{
const idx = graphics.ProjectionMatrixUniformVariableIndex
g.uniformVars[idx].name = g.uniformVariableName(idx)
g.uniformVars[idx].value = []float32{
2 / float32(dw), 0, 0, 0,
0, 2 / float32(dh), 0, 0,
0, 0, 1, 0,
-1, -1, 0, 1,
}
g.uniformVars[idx].typ = shader.ir.Uniforms[idx]
}
for i, v := range uniforms {
const offset = graphics.PreservedUniformVariablesCount
g.uniformVars[i+offset].name = g.uniformVariableName(i + offset)
g.uniformVars[i+offset].value = v
g.uniformVars[i+offset].typ = shader.ir.Uniforms[i+offset]
} }
var imgs [graphics.ShaderImageCount]textureVariable var imgs [graphics.ShaderImageCount]textureVariable

View File

@ -19,7 +19,6 @@ import (
"runtime" "runtime"
"github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphics"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
"github.com/hajimehoshi/ebiten/v2/internal/shaderir" "github.com/hajimehoshi/ebiten/v2/internal/shaderir"
) )
@ -114,12 +113,6 @@ func init() {
} }
} }
type programKey struct {
useColorM bool
filter graphicsdriver.Filter
address graphicsdriver.Address
}
// openGLState is a state for // openGLState is a state for
type openGLState struct { type openGLState struct {
// arrayBuffer is OpenGL's array buffer (vertices data). // arrayBuffer is OpenGL's array buffer (vertices data).
@ -128,9 +121,6 @@ type openGLState struct {
// elementArrayBuffer is OpenGL's element array buffer (indices data). // elementArrayBuffer is OpenGL's element array buffer (indices data).
elementArrayBuffer buffer elementArrayBuffer buffer
// programs is OpenGL's program for rendering a texture.
programs map[programKey]program
lastProgram program lastProgram program
lastUniforms map[string][]float32 lastUniforms map[string][]float32
lastActiveTexture int lastActiveTexture int
@ -153,18 +143,6 @@ func (s *openGLState) reset(context *context) error {
delete(s.lastUniforms, key) delete(s.lastUniforms, key)
} }
// When context lost happens, deleting programs or buffers is not necessary.
// However, it is not assumed that reset is called only when context lost happens.
// Let's delete them explicitly.
if s.programs == nil {
s.programs = map[programKey]program{}
} else {
for k, p := range s.programs {
context.deleteProgram(p)
delete(s.programs, k)
}
}
// On browsers (at least Chrome), buffers are already detached from the context // On browsers (at least Chrome), buffers are already detached from the context
// and must not be deleted by DeleteBuffer. // and must not be deleted by DeleteBuffer.
if runtime.GOOS != "js" { if runtime.GOOS != "js" {
@ -176,46 +154,6 @@ func (s *openGLState) reset(context *context) error {
} }
} }
shaderVertexModelviewNative, err := context.newVertexShader(vertexShaderStr())
if err != nil {
panic(fmt.Sprintf("graphics: shader compiling error:\n%s", err))
}
defer context.deleteShader(shaderVertexModelviewNative)
for _, c := range []bool{false, true} {
for _, a := range []graphicsdriver.Address{
graphicsdriver.AddressClampToZero,
graphicsdriver.AddressRepeat,
graphicsdriver.AddressUnsafe,
} {
for _, f := range []graphicsdriver.Filter{
graphicsdriver.FilterNearest,
graphicsdriver.FilterLinear,
} {
shaderFragmentColorMatrixNative, err := context.newFragmentShader(fragmentShaderStr(c, f, a))
if err != nil {
panic(fmt.Sprintf("graphics: shader compiling error:\n%s", err))
}
defer context.deleteShader(shaderFragmentColorMatrixNative)
program, err := context.newProgram([]shader{
shaderVertexModelviewNative,
shaderFragmentColorMatrixNative,
}, theArrayBufferLayout.names())
if err != nil {
return err
}
s.programs[programKey{
useColorM: c,
filter: f,
address: a,
}] = program
}
}
}
s.arrayBuffer = theArrayBufferLayout.newArrayBuffer(context) s.arrayBuffer = theArrayBufferLayout.newArrayBuffer(context)
// Note that the indices passed to NewElementArrayBuffer is not under GC management // Note that the indices passed to NewElementArrayBuffer is not under GC management