mirror of
https://github.com/hajimehoshi/ebiten.git
synced 2025-01-26 18:52:44 +01:00
parent
70ef5e7d5b
commit
a9241a45c6
@ -175,7 +175,7 @@ func drawArc(screen *ebiten.Image, count int) {
|
||||
|
||||
theta2 := math.Pi * float64(count) / 180 / 3
|
||||
path.MoveTo(550, 100)
|
||||
path.Arc(550, 100, 50, float32(theta1), float32(theta2))
|
||||
path.Arc(550, 100, 50, float32(theta1), float32(theta2), vector.Clockwise)
|
||||
|
||||
op := &ebiten.DrawTrianglesOptions{
|
||||
EvenOdd: true,
|
||||
|
102
vector/path.go
102
vector/path.go
@ -23,6 +23,14 @@ import (
|
||||
"github.com/hajimehoshi/ebiten/v2"
|
||||
)
|
||||
|
||||
// Direction represents clockwise or countercolockwise.
|
||||
type Direction int
|
||||
|
||||
const (
|
||||
Clockwise Direction = iota
|
||||
CounterClockwise
|
||||
)
|
||||
|
||||
type point struct {
|
||||
x float32
|
||||
y float32
|
||||
@ -139,6 +147,10 @@ func normalize(x, y float32) (float32, float32) {
|
||||
return x / len, y / len
|
||||
}
|
||||
|
||||
func cross(x0, y0, x1, y1 float32) float32 {
|
||||
return x0*y1 - x1*y0
|
||||
}
|
||||
|
||||
// ArcTo adds an arc curve to the path. (x1, y1) is the control point, and (x2, y2) is the destination.
|
||||
//
|
||||
// ArcTo updates the current position to (x2, y2).
|
||||
@ -165,21 +177,22 @@ func (p *Path) ArcTo(x1, y1, x2, y2, radius float32) {
|
||||
ax0 := x1 + dx0*dist
|
||||
ay0 := y1 + dy0*dist
|
||||
|
||||
// (ax1, ay1) is the end of the arc.
|
||||
ax1 := x1 + dx1*dist
|
||||
ay1 := y1 + dy1*dist
|
||||
|
||||
p.LineTo(ax0, ay0)
|
||||
|
||||
// Calculate the control points for an approximated Bézier curve.
|
||||
// See https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/beziers.
|
||||
alpha := math.Pi - theta
|
||||
l := radius * float32(math.Tan(alpha/4)*4/3)
|
||||
cx0 := ax0 + l*(-dx0)
|
||||
cy0 := ay0 + l*(-dy0)
|
||||
cx1 := ax1 + l*(-dx1)
|
||||
cy1 := ay1 + l*(-dy1)
|
||||
p.CubicTo(cx0, cy0, cx1, cy1, ax1, ay1)
|
||||
var cx, cy, a0, a1 float32
|
||||
var dir Direction
|
||||
if cross(dx0, dy0, dx1, dy1) >= 0 {
|
||||
cx = ax0 - dy0*radius
|
||||
cy = ay0 + dx0*radius
|
||||
a0 = float32(math.Atan2(float64(-dx0), float64(dy0)))
|
||||
a1 = float32(math.Atan2(float64(dx1), float64(-dy1)))
|
||||
dir = CounterClockwise
|
||||
} else {
|
||||
cx = ax0 + dy0*radius
|
||||
cy = ay0 - dx0*radius
|
||||
a0 = float32(math.Atan2(float64(dx0), float64(-dy0)))
|
||||
a1 = float32(math.Atan2(float64(-dx1), float64(dy1)))
|
||||
dir = Clockwise
|
||||
}
|
||||
p.Arc(cx, cy, radius, a0, a1, dir)
|
||||
|
||||
p.LineTo(x2, y2)
|
||||
}
|
||||
@ -188,27 +201,50 @@ func (p *Path) ArcTo(x1, y1, x2, y2, radius float32) {
|
||||
// (x, y) is the center of the arc.
|
||||
//
|
||||
// Arc updates the current position to the end of the arc.
|
||||
func (p *Path) Arc(x, y, radius, startAngle, endAngle float32) {
|
||||
func (p *Path) Arc(x, y, radius, startAngle, endAngle float32, dir Direction) {
|
||||
// Adjust the angles.
|
||||
for startAngle > endAngle {
|
||||
endAngle += 2 * math.Pi
|
||||
var da float64
|
||||
if dir == Clockwise {
|
||||
for startAngle > endAngle {
|
||||
endAngle += 2 * math.Pi
|
||||
}
|
||||
da = float64(endAngle - startAngle)
|
||||
} else {
|
||||
for startAngle < endAngle {
|
||||
startAngle += 2 * math.Pi
|
||||
}
|
||||
da = float64(startAngle - endAngle)
|
||||
}
|
||||
da := float64(endAngle - startAngle)
|
||||
|
||||
if da >= 2*math.Pi {
|
||||
da = 2 * math.Pi
|
||||
endAngle = startAngle + float32(da)
|
||||
if dir == Clockwise {
|
||||
endAngle = startAngle + 2*math.Pi
|
||||
} else {
|
||||
startAngle = endAngle + 2*math.Pi
|
||||
}
|
||||
}
|
||||
|
||||
// If the angle is big, splict this into multiple Arc calls.
|
||||
if da > math.Pi/2 {
|
||||
const delta = math.Pi / 3
|
||||
a := float64(startAngle)
|
||||
for {
|
||||
p.Arc(x, y, radius, float32(a), float32(math.Min(a+delta, float64(endAngle))))
|
||||
if a+delta >= float64(endAngle) {
|
||||
break
|
||||
if dir == Clockwise {
|
||||
for {
|
||||
p.Arc(x, y, radius, float32(a), float32(math.Min(a+delta, float64(endAngle))), dir)
|
||||
if a+delta >= float64(endAngle) {
|
||||
break
|
||||
}
|
||||
a += delta
|
||||
}
|
||||
} else {
|
||||
for {
|
||||
p.Arc(x, y, radius, float32(a), float32(math.Max(a-delta, float64(endAngle))), dir)
|
||||
if a-delta <= float64(endAngle) {
|
||||
break
|
||||
}
|
||||
a -= delta
|
||||
}
|
||||
a += delta
|
||||
}
|
||||
return
|
||||
}
|
||||
@ -225,10 +261,18 @@ func (p *Path) Arc(x, y, radius, startAngle, endAngle float32) {
|
||||
// Calculate the control points for an approximated Bézier curve.
|
||||
// See https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/beziers.
|
||||
l := radius * float32(math.Tan(da/4)*4/3)
|
||||
cx0 := x0 + l*float32(-sin0)
|
||||
cy0 := y0 + l*float32(cos0)
|
||||
cx1 := x1 + l*float32(sin1)
|
||||
cy1 := y1 + l*float32(-cos1)
|
||||
var cx0, cy0, cx1, cy1 float32
|
||||
if dir == Clockwise {
|
||||
cx0 = x0 + l*float32(-sin0)
|
||||
cy0 = y0 + l*float32(cos0)
|
||||
cx1 = x1 + l*float32(sin1)
|
||||
cy1 = y1 + l*float32(-cos1)
|
||||
} else {
|
||||
cx0 = x0 + l*float32(sin0)
|
||||
cy0 = y0 + l*float32(-cos0)
|
||||
cx1 = x1 + l*float32(-sin1)
|
||||
cy1 = y1 + l*float32(cos1)
|
||||
}
|
||||
p.CubicTo(cx0, cy0, cx1, cy1, x1, y1)
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user