ebiten: add NewImageWithOptions and NewImageOptions

This change adds NewImageWithOptions, that creates a new image with
the given options.

NewImageWithOptions takes image.Rectangle instead of a width and a
height, then a user can create an image with an arbitrary bounds.
A left-upper position can be a negative number.

NewImageWithOptions can create an unmanged image, that is no longer
on an automatic internal texture atlas. A user can have finer controls
over the image.

This change also adds tests for this function.

Updates #2013
Updates #2017
Updates #2124
This commit is contained in:
Hajime Hoshi 2022-06-11 23:06:59 +09:00
parent 7a94140724
commit bac34a4474
4 changed files with 499 additions and 99 deletions

View File

@ -15,6 +15,8 @@
package ebiten package ebiten
import ( import (
"image"
"github.com/hajimehoshi/ebiten/v2/internal/atlas" "github.com/hajimehoshi/ebiten/v2/internal/atlas"
"github.com/hajimehoshi/ebiten/v2/internal/ui" "github.com/hajimehoshi/ebiten/v2/internal/ui"
) )
@ -45,7 +47,7 @@ func (c *gameForUI) NewOffscreenImage(width, height int) *ui.Image {
// A violatile image is also always isolated. // A violatile image is also always isolated.
imageType = atlas.ImageTypeVolatile imageType = atlas.ImageTypeVolatile
} }
c.offscreen = newImage(width, height, imageType) c.offscreen = newImage(image.Rect(0, 0, width, height), imageType)
return c.offscreen.image return c.offscreen.image
} }

234
image.go
View File

@ -111,6 +111,47 @@ type DrawImageOptions struct {
Filter Filter Filter Filter
} }
// adjustPosition converts the position in the *ebiten.Image coordinate to the *ui.Image coordinate.
func (i *Image) adjustPosition(x, y int) (int, int) {
if i.isSubImage() {
or := i.original.Bounds()
x -= or.Min.X
y -= or.Min.Y
return x, y
}
r := i.Bounds()
x -= r.Min.X
y -= r.Min.Y
return x, y
}
// adjustPositionF32 converts the position in the *ebiten.Image coordinate to the *ui.Image coordinate.
func (i *Image) adjustPositionF32(x, y float32) (float32, float32) {
if i.isSubImage() {
or := i.original.Bounds()
x -= float32(or.Min.X)
y -= float32(or.Min.Y)
return x, y
}
r := i.Bounds()
x -= float32(r.Min.X)
y -= float32(r.Min.Y)
return x, y
}
func (i *Image) adjustedRegion() graphicsdriver.Region {
b := i.Bounds()
x, y := i.adjustPosition(b.Min.X, b.Min.Y)
return graphicsdriver.Region{
X: float32(x),
Y: float32(y),
Width: float32(b.Dx()),
Height: float32(b.Dy()),
}
}
// DrawImage draws the given image on the image i. // DrawImage draws the given image on the image i.
// //
// DrawImage accepts the options. For details, see the document of // DrawImage accepts the options. For details, see the document of
@ -156,37 +197,30 @@ func (i *Image) DrawImage(img *Image, options *DrawImageOptions) {
return return
} }
dstBounds := i.Bounds()
dstRegion := graphicsdriver.Region{
X: float32(dstBounds.Min.X),
Y: float32(dstBounds.Min.Y),
Width: float32(dstBounds.Dx()),
Height: float32(dstBounds.Dy()),
}
// Calculate vertices before locking because the user can do anything in // Calculate vertices before locking because the user can do anything in
// options.ImageParts interface without deadlock (e.g. Call Image functions). // options.ImageParts interface without deadlock (e.g. Call Image functions).
if options == nil { if options == nil {
options = &DrawImageOptions{} options = &DrawImageOptions{}
} }
bounds := img.Bounds()
mode := graphicsdriver.CompositeMode(options.CompositeMode) mode := graphicsdriver.CompositeMode(options.CompositeMode)
filter := graphicsdriver.Filter(options.Filter) filter := graphicsdriver.Filter(options.Filter)
if offsetX, offsetY := i.adjustPosition(0, 0); offsetX != 0 || offsetY != 0 {
options.GeoM.Translate(float64(offsetX), float64(offsetY))
}
a, b, c, d, tx, ty := options.GeoM.elements32() a, b, c, d, tx, ty := options.GeoM.elements32()
sx0 := float32(bounds.Min.X) bounds := img.Bounds()
sy0 := float32(bounds.Min.Y) sx0, sy0 := img.adjustPosition(bounds.Min.X, bounds.Min.Y)
sx1 := float32(bounds.Max.X) sx1, sy1 := img.adjustPosition(bounds.Max.X, bounds.Max.Y)
sy1 := float32(bounds.Max.Y)
colorm, cr, cg, cb, ca := colorMToScale(options.ColorM.affineColorM()) colorm, cr, cg, cb, ca := colorMToScale(options.ColorM.affineColorM())
vs := graphics.QuadVertices(sx0, sy0, sx1, sy1, a, b, c, d, tx, ty, cr, cg, cb, ca) vs := graphics.QuadVertices(float32(sx0), float32(sy0), float32(sx1), float32(sy1), a, b, c, d, tx, ty, cr, cg, cb, ca)
is := graphics.QuadIndices() is := graphics.QuadIndices()
srcs := [graphics.ShaderImageNum]*ui.Image{img.image} srcs := [graphics.ShaderImageNum]*ui.Image{img.image}
i.image.DrawTriangles(srcs, vs, is, colorm, mode, filter, graphicsdriver.AddressUnsafe, dstRegion, graphicsdriver.Region{}, [graphics.ShaderImageNum - 1][2]float32{}, nil, nil, false, canSkipMipmap(options.GeoM, filter)) i.image.DrawTriangles(srcs, vs, is, colorm, mode, filter, graphicsdriver.AddressUnsafe, i.adjustedRegion(), graphicsdriver.Region{}, [graphics.ShaderImageNum - 1][2]float32{}, nil, nil, false, canSkipMipmap(options.GeoM, filter))
} }
// Vertex represents a vertex passed to DrawTriangles. // Vertex represents a vertex passed to DrawTriangles.
@ -311,14 +345,6 @@ func (i *Image) DrawTriangles(vertices []Vertex, indices []uint16, img *Image, o
} }
// TODO: Check the maximum value of indices and len(vertices)? // TODO: Check the maximum value of indices and len(vertices)?
dstBounds := i.Bounds()
dstRegion := graphicsdriver.Region{
X: float32(dstBounds.Min.X),
Y: float32(dstBounds.Min.Y),
Width: float32(dstBounds.Dx()),
Height: float32(dstBounds.Dy()),
}
if options == nil { if options == nil {
options = &DrawTrianglesOptions{} options = &DrawTrianglesOptions{}
} }
@ -328,13 +354,7 @@ func (i *Image) DrawTriangles(vertices []Vertex, indices []uint16, img *Image, o
address := graphicsdriver.Address(options.Address) address := graphicsdriver.Address(options.Address)
var sr graphicsdriver.Region var sr graphicsdriver.Region
if address != graphicsdriver.AddressUnsafe { if address != graphicsdriver.AddressUnsafe {
b := img.Bounds() sr = img.adjustedRegion()
sr = graphicsdriver.Region{
X: float32(b.Min.X),
Y: float32(b.Min.Y),
Width: float32(b.Dx()),
Height: float32(b.Dy()),
}
} }
filter := graphicsdriver.Filter(options.Filter) filter := graphicsdriver.Filter(options.Filter)
@ -342,11 +362,14 @@ func (i *Image) DrawTriangles(vertices []Vertex, indices []uint16, img *Image, o
colorm, cr, cg, cb, ca := colorMToScale(options.ColorM.affineColorM()) colorm, cr, cg, cb, ca := colorMToScale(options.ColorM.affineColorM())
vs := graphics.Vertices(len(vertices)) vs := graphics.Vertices(len(vertices))
dst := i
for i, v := range vertices { for i, v := range vertices {
vs[i*graphics.VertexFloatNum] = v.DstX dx, dy := dst.adjustPositionF32(v.DstX, v.DstY)
vs[i*graphics.VertexFloatNum+1] = v.DstY vs[i*graphics.VertexFloatNum] = dx
vs[i*graphics.VertexFloatNum+2] = v.SrcX vs[i*graphics.VertexFloatNum+1] = dy
vs[i*graphics.VertexFloatNum+3] = v.SrcY sx, sy := img.adjustPositionF32(v.SrcX, v.SrcY)
vs[i*graphics.VertexFloatNum+2] = sx
vs[i*graphics.VertexFloatNum+3] = sy
vs[i*graphics.VertexFloatNum+4] = v.ColorR * cr vs[i*graphics.VertexFloatNum+4] = v.ColorR * cr
vs[i*graphics.VertexFloatNum+5] = v.ColorG * cg vs[i*graphics.VertexFloatNum+5] = v.ColorG * cg
vs[i*graphics.VertexFloatNum+6] = v.ColorB * cb vs[i*graphics.VertexFloatNum+6] = v.ColorB * cb
@ -357,7 +380,7 @@ func (i *Image) DrawTriangles(vertices []Vertex, indices []uint16, img *Image, o
srcs := [graphics.ShaderImageNum]*ui.Image{img.image} srcs := [graphics.ShaderImageNum]*ui.Image{img.image}
i.image.DrawTriangles(srcs, vs, is, colorm, mode, filter, address, dstRegion, sr, [graphics.ShaderImageNum - 1][2]float32{}, nil, nil, options.FillRule == EvenOdd, false) i.image.DrawTriangles(srcs, vs, is, colorm, mode, filter, address, i.adjustedRegion(), sr, [graphics.ShaderImageNum - 1][2]float32{}, nil, nil, options.FillRule == EvenOdd, false)
} }
// DrawTrianglesShaderOptions represents options for DrawTrianglesShader. // DrawTrianglesShaderOptions represents options for DrawTrianglesShader.
@ -377,7 +400,7 @@ type DrawTrianglesShaderOptions struct {
Uniforms map[string]interface{} Uniforms map[string]interface{}
// Images is a set of the source images. // Images is a set of the source images.
// All the image must be the same size. // All the image must be the same bounds.
Images [4]*Image Images [4]*Image
// FillRule indicates the rule how an overlapped region is rendered. // FillRule indicates the rule how an overlapped region is rendered.
@ -427,14 +450,6 @@ func (i *Image) DrawTrianglesShader(vertices []Vertex, indices []uint16, shader
} }
// TODO: Check the maximum value of indices and len(vertices)? // TODO: Check the maximum value of indices and len(vertices)?
dstBounds := i.Bounds()
dstRegion := graphicsdriver.Region{
X: float32(dstBounds.Min.X),
Y: float32(dstBounds.Min.Y),
Width: float32(dstBounds.Dx()),
Height: float32(dstBounds.Dy()),
}
if options == nil { if options == nil {
options = &DrawTrianglesShaderOptions{} options = &DrawTrianglesShaderOptions{}
} }
@ -442,11 +457,18 @@ func (i *Image) DrawTrianglesShader(vertices []Vertex, indices []uint16, shader
mode := graphicsdriver.CompositeMode(options.CompositeMode) mode := graphicsdriver.CompositeMode(options.CompositeMode)
vs := graphics.Vertices(len(vertices)) vs := graphics.Vertices(len(vertices))
dst := i
src := options.Images[0]
for i, v := range vertices { for i, v := range vertices {
vs[i*graphics.VertexFloatNum] = v.DstX dx, dy := dst.adjustPositionF32(v.DstX, v.DstY)
vs[i*graphics.VertexFloatNum+1] = v.DstY vs[i*graphics.VertexFloatNum] = dx
vs[i*graphics.VertexFloatNum+2] = v.SrcX vs[i*graphics.VertexFloatNum+1] = dy
vs[i*graphics.VertexFloatNum+3] = v.SrcY sx, sy := v.SrcX, v.SrcY
if src != nil {
sx, sy = src.adjustPositionF32(sx, sy)
}
vs[i*graphics.VertexFloatNum+2] = sx
vs[i*graphics.VertexFloatNum+3] = sy
vs[i*graphics.VertexFloatNum+4] = v.ColorR vs[i*graphics.VertexFloatNum+4] = v.ColorR
vs[i*graphics.VertexFloatNum+5] = v.ColorG vs[i*graphics.VertexFloatNum+5] = v.ColorG
vs[i*graphics.VertexFloatNum+6] = v.ColorB vs[i*graphics.VertexFloatNum+6] = v.ColorB
@ -475,22 +497,12 @@ func (i *Image) DrawTrianglesShader(vertices []Vertex, indices []uint16, shader
imgs[i] = img.image imgs[i] = img.image
} }
var sx, sy float32 var sx, sy int
if options.Images[0] != nil {
b := options.Images[0].Bounds()
sx = float32(b.Min.X)
sy = float32(b.Min.Y)
}
var sr graphicsdriver.Region var sr graphicsdriver.Region
if img := options.Images[0]; img != nil { if img := options.Images[0]; img != nil {
b := img.Bounds() b := img.Bounds()
sr = graphicsdriver.Region{ sx, sy = img.adjustPosition(b.Min.X, b.Min.Y)
X: float32(b.Min.X), sr = img.adjustedRegion()
Y: float32(b.Min.Y),
Width: float32(b.Dx()),
Height: float32(b.Dy()),
}
} }
var offsets [graphics.ShaderImageNum - 1][2]float32 var offsets [graphics.ShaderImageNum - 1][2]float32
@ -499,11 +511,14 @@ func (i *Image) DrawTrianglesShader(vertices []Vertex, indices []uint16, shader
continue continue
} }
b := img.Bounds() b := img.Bounds()
offsets[i][0] = -sx + float32(b.Min.X) x, y := img.adjustPosition(b.Min.X, b.Min.Y)
offsets[i][1] = -sy + float32(b.Min.Y) // (sx, sy) is the left-upper position of the first image.
// Calculate the direction between the current image's left-upper position and the first one's.
offsets[i][0] = float32(x - sx)
offsets[i][1] = float32(y - sy)
} }
i.image.DrawTriangles(imgs, vs, is, affine.ColorMIdentity{}, mode, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, dstRegion, sr, offsets, shader.shader, shader.convertUniforms(options.Uniforms), options.FillRule == EvenOdd, false) i.image.DrawTriangles(imgs, vs, is, affine.ColorMIdentity{}, mode, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, i.adjustedRegion(), sr, offsets, shader.shader, shader.convertUniforms(options.Uniforms), options.FillRule == EvenOdd, false)
} }
// DrawRectShaderOptions represents options for DrawRectShader. // DrawRectShaderOptions represents options for DrawRectShader.
@ -527,7 +542,7 @@ type DrawRectShaderOptions struct {
Uniforms map[string]interface{} Uniforms map[string]interface{}
// Images is a set of the source images. // Images is a set of the source images.
// All the image must be the same size with the rectangle. // All the image must be the same bounds.
Images [4]*Image Images [4]*Image
} }
@ -554,14 +569,6 @@ func (i *Image) DrawRectShader(width, height int, shader *Shader, options *DrawR
return return
} }
dstBounds := i.Bounds()
dstRegion := graphicsdriver.Region{
X: float32(dstBounds.Min.X),
Y: float32(dstBounds.Min.Y),
Width: float32(dstBounds.Dx()),
Height: float32(dstBounds.Dy()),
}
if options == nil { if options == nil {
options = &DrawRectShaderOptions{} options = &DrawRectShaderOptions{}
} }
@ -582,27 +589,20 @@ func (i *Image) DrawRectShader(width, height int, shader *Shader, options *DrawR
imgs[i] = img.image imgs[i] = img.image
} }
var sx, sy float32 var sx, sy int
if options.Images[0] != nil {
b := options.Images[0].Bounds()
sx = float32(b.Min.X)
sy = float32(b.Min.Y)
}
a, b, c, d, tx, ty := options.GeoM.elements32()
vs := graphics.QuadVertices(sx, sy, sx+float32(width), sy+float32(height), a, b, c, d, tx, ty, 1, 1, 1, 1)
is := graphics.QuadIndices()
var sr graphicsdriver.Region var sr graphicsdriver.Region
if img := options.Images[0]; img != nil { if img := options.Images[0]; img != nil {
b := img.Bounds() b := img.Bounds()
sr = graphicsdriver.Region{ sx, sy = img.adjustPosition(b.Min.X, b.Min.Y)
X: float32(b.Min.X), sr = img.adjustedRegion()
Y: float32(b.Min.Y),
Width: float32(b.Dx()),
Height: float32(b.Dy()),
} }
if offsetX, offsetY := i.adjustPosition(0, 0); offsetX != 0 || offsetY != 0 {
options.GeoM.Translate(float64(offsetX), float64(offsetY))
} }
a, b, c, d, tx, ty := options.GeoM.elements32()
vs := graphics.QuadVertices(float32(sx), float32(sy), float32(sx+width), float32(sy+height), a, b, c, d, tx, ty, 1, 1, 1, 1)
is := graphics.QuadIndices()
var offsets [graphics.ShaderImageNum - 1][2]float32 var offsets [graphics.ShaderImageNum - 1][2]float32
for i, img := range options.Images[1:] { for i, img := range options.Images[1:] {
@ -610,11 +610,14 @@ func (i *Image) DrawRectShader(width, height int, shader *Shader, options *DrawR
continue continue
} }
b := img.Bounds() b := img.Bounds()
offsets[i][0] = -sx + float32(b.Min.X) x, y := img.adjustPosition(b.Min.X, b.Min.Y)
offsets[i][1] = -sy + float32(b.Min.Y) // (sx, sy) is the left-upper position of the first image.
// Calculate the direction between the current image's left-upper position and the first one's.
offsets[i][0] = float32(x - sx)
offsets[i][1] = float32(y - sy)
} }
i.image.DrawTriangles(imgs, vs, is, affine.ColorMIdentity{}, mode, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, dstRegion, sr, offsets, shader.shader, shader.convertUniforms(options.Uniforms), false, canSkipMipmap(options.GeoM, graphicsdriver.FilterNearest)) i.image.DrawTriangles(imgs, vs, is, affine.ColorMIdentity{}, mode, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, i.adjustedRegion(), sr, offsets, shader.shader, shader.convertUniforms(options.Uniforms), false, canSkipMipmap(options.GeoM, graphicsdriver.FilterNearest))
} }
// SubImage returns an image representing the portion of the image p visible through r. // SubImage returns an image representing the portion of the image p visible through r.
@ -706,7 +709,7 @@ func (i *Image) at(x, y int) (r, g, b, a uint8) {
if !image.Pt(x, y).In(i.Bounds()) { if !image.Pt(x, y).In(i.Bounds()) {
return 0, 0, 0, 0 return 0, 0, 0, 0
} }
return i.image.At(x, y) return i.image.At(i.adjustPosition(x, y))
} }
// Set sets the color at (x, y). // Set sets the color at (x, y).
@ -729,6 +732,7 @@ func (i *Image) Set(x, y int, clr color.Color) {
} }
r, g, b, a := clr.RGBA() r, g, b, a := clr.RGBA()
x, y = i.adjustPosition(x, y)
i.image.ReplacePixels([]byte{byte(r >> 8), byte(g >> 8), byte(b >> 8), byte(a >> 8)}, x, y, 1, 1) i.image.ReplacePixels([]byte{byte(r >> 8), byte(g >> 8), byte(b >> 8), byte(a >> 8)}, x, y, 1, 1)
} }
@ -772,10 +776,11 @@ func (i *Image) ReplacePixels(pixels []byte) {
} }
r := i.Bounds() r := i.Bounds()
x, y := i.adjustPosition(r.Min.X, r.Min.Y)
// Do not need to copy pixels here. // Do not need to copy pixels here.
// * In internal/mipmap, pixels are copied when necessary. // * In internal/mipmap, pixels are copied when necessary.
// * In internal/atlas, pixels are copied to make its paddings. // * In internal/atlas, pixels are copied to make its paddings.
i.image.ReplacePixels(pixels, r.Min.X, r.Min.Y, r.Dx(), r.Dy()) i.image.ReplacePixels(pixels, x, y, r.Dx(), r.Dy())
} }
// NewImage returns an empty image. // NewImage returns an empty image.
@ -788,22 +793,57 @@ func (i *Image) ReplacePixels(pixels []byte) {
// //
// NewImage panics if RunGame already finishes. // NewImage panics if RunGame already finishes.
func NewImage(width, height int) *Image { func NewImage(width, height int) *Image {
return newImage(width, height, atlas.ImageTypeRegular) return newImage(image.Rect(0, 0, width, height), atlas.ImageTypeRegular)
} }
func newImage(width, height int, imageType atlas.ImageType) *Image { // NewImageOptions represents options for NewImage.
type NewImageOptions struct {
// Unmanaged represents whether the image is unmanaged or not.
// The default (zero) value is false, that means the image is managed.
//
// An unmanged image is never on an internal automatic texture atlas.
// A regular image is a part of an internal texture atlas, and locating them is done automatically in Ebitengine.
// NewUnmanagedImage is useful when you want finer controls over the image for performance and memory reasons.
Unmanaged bool
}
// NewImageWithOptions returns an empty image with the given bounds and the options.
//
// If width or height is less than 1 or more than device-dependent maximum size, NewImageWithOptions panics.
//
// The rendering origin position is (0, 0) of the given bounds.
// If DrawImage is called on a new image created by NewImageOptions,
// for example, the center of scaling and rotating is (0, 0), that might not be a left-upper position.
//
// NewImageWithOptions should be called only when necessary.
// For example, you should avoid to call NewImageWithOptions every Update or Draw call.
// Reusing the same image by Clear is much more efficient than creating a new image.
//
// NewImageWithOptions panics if RunGame already finishes.
func NewImageWithOptions(bounds image.Rectangle, options *NewImageOptions) *Image {
imageType := atlas.ImageTypeRegular
if options != nil && options.Unmanaged {
imageType = atlas.ImageTypeUnmanaged
}
return newImage(bounds, imageType)
}
func newImage(bounds image.Rectangle, imageType atlas.ImageType) *Image {
if isRunGameEnded() { if isRunGameEnded() {
panic(fmt.Sprintf("ebiten: NewImage cannot be called after RunGame finishes")) panic(fmt.Sprintf("ebiten: NewImage cannot be called after RunGame finishes"))
} }
width, height := bounds.Dx(), bounds.Dy()
if width <= 0 { if width <= 0 {
panic(fmt.Sprintf("ebiten: width at NewImage must be positive but %d", width)) panic(fmt.Sprintf("ebiten: width at NewImage must be positive but %d", width))
} }
if height <= 0 { if height <= 0 {
panic(fmt.Sprintf("ebiten: height at NewImage must be positive but %d", height)) panic(fmt.Sprintf("ebiten: height at NewImage must be positive but %d", height))
} }
i := &Image{ i := &Image{
image: ui.NewImage(width, height, imageType), image: ui.NewImage(width, height, imageType),
bounds: image.Rect(0, 0, width, height), bounds: bounds,
} }
i.addr = i i.addr = i
return i return i

View File

@ -2889,3 +2889,235 @@ func TestImageNewImageFromEbitenImage(t *testing.T) {
} }
} }
} }
func TestImageOptionsUnmanaged(t *testing.T) {
const (
w = 16
h = 16
)
pix := make([]byte, 4*w*h)
for j := 0; j < h; j++ {
for i := 0; i < w; i++ {
idx := 4 * (i + j*w)
pix[idx] = byte(i)
pix[idx+1] = byte(j)
pix[idx+2] = 0
pix[idx+3] = 0xff
}
}
op := &ebiten.NewImageOptions{
Unmanaged: true,
}
img := ebiten.NewImageWithOptions(image.Rect(0, 0, w, h), op)
img.ReplacePixels(pix)
for j := 0; j < h; j++ {
for i := 0; i < w; i++ {
got := img.At(i, j)
want := color.RGBA{byte(i), byte(j), 0, 0xff}
if got != want {
t.Errorf("img.At(%d, %d): got: %v, want: %v", i, j, got, want)
}
}
}
}
func TestImageOptionsNegativeBoundsReplacePixels(t *testing.T) {
const (
w = 16
h = 16
)
pix0 := make([]byte, 4*w*h)
for j := 0; j < h; j++ {
for i := 0; i < w; i++ {
idx := 4 * (i + j*w)
pix0[idx] = byte(i)
pix0[idx+1] = byte(j)
pix0[idx+2] = 0
pix0[idx+3] = 0xff
}
}
const offset = -8
img := ebiten.NewImageWithOptions(image.Rect(offset, offset, w+offset, h+offset), nil)
img.ReplacePixels(pix0)
for j := offset; j < h+offset; j++ {
for i := offset; i < w+offset; i++ {
got := img.At(i, j)
want := color.RGBA{byte(i - offset), byte(j - offset), 0, 0xff}
if got != want {
t.Errorf("img.At(%d, %d): got: %v, want: %v", i, j, got, want)
}
}
}
pix1 := make([]byte, 4*(w/2)*(h/2))
for j := 0; j < h/2; j++ {
for i := 0; i < w/2; i++ {
idx := 4 * (i + j*w/2)
pix1[idx] = 0
pix1[idx+1] = 0
pix1[idx+2] = 0xff
pix1[idx+3] = 0xff
}
}
const offset2 = -4
sub := image.Rect(offset2, offset2, w/2+offset2, h/2+offset2)
img.SubImage(sub).(*ebiten.Image).ReplacePixels(pix1)
for j := offset; j < h+offset; j++ {
for i := offset; i < w+offset; i++ {
got := img.At(i, j)
want := color.RGBA{byte(i - offset), byte(j - offset), 0, 0xff}
if image.Pt(i, j).In(sub) {
want = color.RGBA{0, 0, 0xff, 0xff}
}
if got != want {
t.Errorf("img.At(%d, %d): got: %v, want: %v", i, j, got, want)
}
}
}
}
func TestImageOptionsNegativeBoundsSet(t *testing.T) {
const (
w = 16
h = 16
)
pix0 := make([]byte, 4*w*h)
for j := 0; j < h; j++ {
for i := 0; i < w; i++ {
idx := 4 * (i + j*w)
pix0[idx] = byte(i)
pix0[idx+1] = byte(j)
pix0[idx+2] = 0
pix0[idx+3] = 0xff
}
}
const offset = -8
img := ebiten.NewImageWithOptions(image.Rect(offset, offset, w+offset, h+offset), nil)
img.ReplacePixels(pix0)
img.Set(-1, -2, color.RGBA{0, 0, 0, 0})
for j := offset; j < h+offset; j++ {
for i := offset; i < w+offset; i++ {
got := img.At(i, j)
want := color.RGBA{byte(i - offset), byte(j - offset), 0, 0xff}
if i == -1 && j == -2 {
want = color.RGBA{0, 0, 0, 0}
}
if got != want {
t.Errorf("img.At(%d, %d): got: %v, want: %v", i, j, got, want)
}
}
}
}
func TestImageOptionsNegativeBoundsDrawImage(t *testing.T) {
const (
w = 16
h = 16
offset = -8
)
dst := ebiten.NewImageWithOptions(image.Rect(offset, offset, w+offset, h+offset), nil)
src := ebiten.NewImageWithOptions(image.Rect(-1, -1, 1, 1), nil)
pix := make([]byte, 4*2*2)
for i := range pix {
pix[i] = 0xff
}
src.ReplacePixels(pix)
op := &ebiten.DrawImageOptions{}
op.GeoM.Translate(-1, -1)
op.GeoM.Scale(2, 3)
dst.DrawImage(src, op)
for j := offset; j < h+offset; j++ {
for i := offset; i < w+offset; i++ {
got := dst.At(i, j)
var want color.RGBA
if -2 <= i && i < 2 && -3 <= j && j < 3 {
want = color.RGBA{0xff, 0xff, 0xff, 0xff}
}
if got != want {
t.Errorf("img.At(%d, %d): got: %v, want: %v", i, j, got, want)
}
}
}
}
func TestImageOptionsNegativeBoundsDrawTriangles(t *testing.T) {
const (
w = 16
h = 16
offset = -8
)
dst := ebiten.NewImageWithOptions(image.Rect(offset, offset, w+offset, h+offset), nil)
src := ebiten.NewImageWithOptions(image.Rect(-1, -1, 1, 1), nil)
pix := make([]byte, 4*2*2)
for i := range pix {
pix[i] = 0xff
}
src.ReplacePixels(pix)
vs := []ebiten.Vertex{
{
DstX: -2,
DstY: -3,
SrcX: -1,
SrcY: -1,
ColorR: 1,
ColorG: 1,
ColorB: 1,
ColorA: 1,
},
{
DstX: 2,
DstY: -3,
SrcX: 1,
SrcY: -1,
ColorR: 1,
ColorG: 1,
ColorB: 1,
ColorA: 1,
},
{
DstX: -2,
DstY: 3,
SrcX: -1,
SrcY: 1,
ColorR: 1,
ColorG: 1,
ColorB: 1,
ColorA: 1,
},
{
DstX: 2,
DstY: 3,
SrcX: 1,
SrcY: 1,
ColorR: 1,
ColorG: 1,
ColorB: 1,
ColorA: 1,
},
}
is := []uint16{0, 1, 2, 1, 2, 3}
dst.DrawTriangles(vs, is, src, nil)
for j := offset; j < h+offset; j++ {
for i := offset; i < w+offset; i++ {
got := dst.At(i, j)
var want color.RGBA
if -2 <= i && i < 2 && -3 <= j && j < 3 {
want = color.RGBA{0xff, 0xff, 0xff, 0xff}
}
if got != want {
t.Errorf("img.At(%d, %d): got: %v, want: %v", i, j, got, want)
}
}
}
}

View File

@ -969,3 +969,129 @@ func Fragment(position vec4, texCoord vec2, color vec4) vec4 {
} }
} }
} }
func TestShaderOptionsNegativeBounds(t *testing.T) {
const w, h = 16, 16
s, err := ebiten.NewShader([]byte(`package main
func Fragment(position vec4, texCoord vec2, color vec4) vec4 {
r := imageSrc0At(texCoord).r
g := imageSrc1At(texCoord).g
return vec4(r, g, 0, 1)
}
`))
if err != nil {
t.Fatal(err)
}
const offset0 = -4
src0 := ebiten.NewImageWithOptions(image.Rect(offset0, offset0, w+offset0, h+offset0), nil)
pix0 := make([]byte, 4*w*h)
for j := 0; j < h; j++ {
for i := 0; i < w; i++ {
if 2 <= i && i < 10 && 3 <= j && j < 11 {
pix0[4*(j*w+i)] = 0xff
pix0[4*(j*w+i)+1] = 0
pix0[4*(j*w+i)+2] = 0
pix0[4*(j*w+i)+3] = 0xff
}
}
}
src0.ReplacePixels(pix0)
src0 = src0.SubImage(image.Rect(2+offset0, 3+offset0, 10+offset0, 11+offset0)).(*ebiten.Image)
const offset1 = -6
src1 := ebiten.NewImageWithOptions(image.Rect(offset1, offset1, w+offset1, h+offset1), nil)
pix1 := make([]byte, 4*w*h)
for j := 0; j < h; j++ {
for i := 0; i < w; i++ {
if 6 <= i && i < 14 && 8 <= j && j < 16 {
pix1[4*(j*w+i)] = 0
pix1[4*(j*w+i)+1] = 0xff
pix1[4*(j*w+i)+2] = 0
pix1[4*(j*w+i)+3] = 0xff
}
}
}
src1.ReplacePixels(pix1)
src1 = src1.SubImage(image.Rect(6+offset1, 8+offset1, 14+offset1, 16+offset1)).(*ebiten.Image)
const offset2 = -2
testPixels := func(testname string, dst *ebiten.Image) {
for j := offset2; j < h+offset2; j++ {
for i := offset2; i < w+offset2; i++ {
got := dst.At(i, j).(color.RGBA)
var want color.RGBA
if 0 <= i && i < w/2 && 0 <= j && j < h/2 {
want = color.RGBA{0xff, 0xff, 0, 0xff}
}
if got != want {
t.Errorf("%s dst.At(%d, %d): got: %v, want: %v", testname, i, j, got, want)
}
}
}
}
t.Run("DrawRectShader", func(t *testing.T) {
dst := ebiten.NewImageWithOptions(image.Rect(offset2, offset2, w+offset2, h+offset2), nil)
op := &ebiten.DrawRectShaderOptions{}
op.Images[0] = src0
op.Images[1] = src1
dst.DrawRectShader(w/2, h/2, s, op)
testPixels("DrawRectShader", dst)
})
t.Run("DrawTrianglesShader", func(t *testing.T) {
dst := ebiten.NewImageWithOptions(image.Rect(offset2, offset2, w+offset2, h+offset2), nil)
vs := []ebiten.Vertex{
{
DstX: 0,
DstY: 0,
SrcX: 2 + offset0,
SrcY: 3 + offset0,
ColorR: 1,
ColorG: 1,
ColorB: 1,
ColorA: 1,
},
{
DstX: w / 2,
DstY: 0,
SrcX: 10 + offset0,
SrcY: 3 + offset0,
ColorR: 1,
ColorG: 1,
ColorB: 1,
ColorA: 1,
},
{
DstX: 0,
DstY: h / 2,
SrcX: 2 + offset0,
SrcY: 11 + offset0,
ColorR: 1,
ColorG: 1,
ColorB: 1,
ColorA: 1,
},
{
DstX: w / 2,
DstY: h / 2,
SrcX: 10 + offset0,
SrcY: 11 + offset0,
ColorR: 1,
ColorG: 1,
ColorB: 1,
ColorA: 1,
},
}
is := []uint16{0, 1, 2, 1, 2, 3}
op := &ebiten.DrawTrianglesShaderOptions{}
op.Images[0] = src0
op.Images[1] = src1
dst.DrawTrianglesShader(vs, is, s, op)
testPixels("DrawTrianglesShader", dst)
})
}