internal/graphicsdriver/directx: separate a part for images and shaders

This commit is contained in:
Hajime Hoshi 2023-03-25 15:49:46 +09:00
parent 4811386d8a
commit c394bdcf7c
3 changed files with 660 additions and 613 deletions

View File

@ -1337,616 +1337,3 @@ func (g *Graphics) genNextShaderID() graphicsdriver.ShaderID {
g.nextShaderID++ g.nextShaderID++
return g.nextShaderID return g.nextShaderID
} }
type Image struct {
graphics *Graphics
id graphicsdriver.ImageID
width int
height int
screen bool
*image12
}
type image12 struct {
states [frameCount]_D3D12_RESOURCE_STATES
texture *_ID3D12Resource
stencil *_ID3D12Resource
rtvDescriptorHeap *_ID3D12DescriptorHeap
dsvDescriptorHeap *_ID3D12DescriptorHeap
uploadingStagingBuffers []*_ID3D12Resource
}
func (i *Image) ID() graphicsdriver.ImageID {
return i.id
}
func (i *Image) Dispose() {
// Dipose the images later as this image might still be used.
i.graphics.removeImage(i)
}
func (i *Image) disposeImpl() {
if i.dsvDescriptorHeap != nil {
i.dsvDescriptorHeap.Release()
i.dsvDescriptorHeap = nil
}
if i.rtvDescriptorHeap != nil {
i.rtvDescriptorHeap.Release()
i.rtvDescriptorHeap = nil
}
if i.stencil != nil {
i.stencil.Release()
i.stencil = nil
}
if i.texture != nil {
i.texture.Release()
i.texture = nil
}
}
func (*Image) IsInvalidated() bool {
return false
}
func (i *Image) ReadPixels(buf []byte, x, y, width, height int) error {
if i.screen {
return errors.New("directx: Pixels cannot be called on the screen")
}
if err := i.graphics.flushCommandList(i.graphics.drawCommandList); err != nil {
return err
}
desc := _D3D12_RESOURCE_DESC{
Dimension: _D3D12_RESOURCE_DIMENSION_TEXTURE2D,
Alignment: 0,
Width: uint64(width),
Height: uint32(height),
DepthOrArraySize: 1,
MipLevels: 0,
Format: _DXGI_FORMAT_R8G8B8A8_UNORM,
SampleDesc: _DXGI_SAMPLE_DESC{
Count: 1,
Quality: 0,
},
Layout: _D3D12_TEXTURE_LAYOUT_UNKNOWN,
Flags: _D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET,
}
layouts, _, _, totalBytes := i.graphics.device.GetCopyableFootprints(&desc, 0, 1, 0)
readingStagingBuffer, err := createBuffer(i.graphics.device, totalBytes, _D3D12_HEAP_TYPE_READBACK)
if err != nil {
return err
}
defer func() {
readingStagingBuffer.Release()
}()
if rb, ok := i.transiteState(_D3D12_RESOURCE_STATE_COPY_SOURCE); ok {
i.graphics.copyCommandList.ResourceBarrier([]_D3D12_RESOURCE_BARRIER_Transition{rb})
}
m, err := readingStagingBuffer.Map(0, &_D3D12_RANGE{0, 0})
if err != nil {
return err
}
dst := _D3D12_TEXTURE_COPY_LOCATION_PlacedFootPrint{
pResource: readingStagingBuffer,
Type: _D3D12_TEXTURE_COPY_TYPE_PLACED_FOOTPRINT,
PlacedFootprint: layouts,
}
src := _D3D12_TEXTURE_COPY_LOCATION_SubresourceIndex{
pResource: i.texture,
Type: _D3D12_TEXTURE_COPY_TYPE_SUBRESOURCE_INDEX,
SubresourceIndex: 0,
}
i.graphics.needFlushCopyCommandList = true
i.graphics.copyCommandList.CopyTextureRegion_PlacedFootPrint_SubresourceIndex(
&dst, 0, 0, 0, &src, &_D3D12_BOX{
left: uint32(x),
top: uint32(y),
front: 0,
right: uint32(x + width),
bottom: uint32(y + height),
back: 1,
})
if err := i.graphics.flushCommandList(i.graphics.copyCommandList); err != nil {
return err
}
dstBytes := unsafe.Slice((*byte)(unsafe.Pointer(m)), totalBytes)
for j := 0; j < height; j++ {
copy(buf[j*width*4:(j+1)*width*4], dstBytes[j*int(layouts.Footprint.RowPitch):])
}
readingStagingBuffer.Unmap(0, nil)
return nil
}
func (i *Image) WritePixels(args []*graphicsdriver.WritePixelsArgs) error {
if i.screen {
return errors.New("directx: WritePixels cannot be called on the screen")
}
if err := i.graphics.flushCommandList(i.graphics.drawCommandList); err != nil {
return err
}
minX := i.width
minY := i.height
maxX := 0
maxY := 0
for _, a := range args {
if minX > a.X {
minX = a.X
}
if minY > a.Y {
minY = a.Y
}
if maxX < a.X+a.Width {
maxX = a.X + a.Width
}
if maxY < a.Y+a.Height {
maxY = a.Y + a.Height
}
}
desc := _D3D12_RESOURCE_DESC{
Dimension: _D3D12_RESOURCE_DIMENSION_TEXTURE2D,
Alignment: 0,
Width: uint64(maxX - minX),
Height: uint32(maxY - minY),
DepthOrArraySize: 1,
MipLevels: 0,
Format: _DXGI_FORMAT_R8G8B8A8_UNORM,
SampleDesc: _DXGI_SAMPLE_DESC{
Count: 1,
Quality: 0,
},
Layout: _D3D12_TEXTURE_LAYOUT_UNKNOWN,
Flags: _D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET,
}
layouts, _, _, totalBytes := i.graphics.device.GetCopyableFootprints(&desc, 0, 1, 0)
uploadingStagingBuffer, err := createBuffer(i.graphics.device, totalBytes, _D3D12_HEAP_TYPE_UPLOAD)
if err != nil {
return err
}
i.uploadingStagingBuffers = append(i.uploadingStagingBuffers, uploadingStagingBuffer)
if rb, ok := i.transiteState(_D3D12_RESOURCE_STATE_COPY_DEST); ok {
i.graphics.copyCommandList.ResourceBarrier([]_D3D12_RESOURCE_BARRIER_Transition{rb})
}
m, err := uploadingStagingBuffer.Map(0, &_D3D12_RANGE{0, 0})
if err != nil {
return err
}
i.graphics.needFlushCopyCommandList = true
srcBytes := unsafe.Slice((*byte)(unsafe.Pointer(m)), totalBytes)
for _, a := range args {
for j := 0; j < a.Height; j++ {
copy(srcBytes[((a.Y-minY)+j)*int(layouts.Footprint.RowPitch)+(a.X-minX)*4:], a.Pixels[j*a.Width*4:(j+1)*a.Width*4])
}
}
for _, a := range args {
dst := _D3D12_TEXTURE_COPY_LOCATION_SubresourceIndex{
pResource: i.texture,
Type: _D3D12_TEXTURE_COPY_TYPE_SUBRESOURCE_INDEX,
SubresourceIndex: 0,
}
src := _D3D12_TEXTURE_COPY_LOCATION_PlacedFootPrint{
pResource: uploadingStagingBuffer,
Type: _D3D12_TEXTURE_COPY_TYPE_PLACED_FOOTPRINT,
PlacedFootprint: layouts,
}
i.graphics.copyCommandList.CopyTextureRegion_SubresourceIndex_PlacedFootPrint(
&dst, uint32(a.X), uint32(a.Y), 0, &src, &_D3D12_BOX{
left: uint32(a.X - minX),
top: uint32(a.Y - minY),
front: 0,
right: uint32(a.X - minX + a.Width),
bottom: uint32(a.Y - minY + a.Height),
back: 1,
})
}
uploadingStagingBuffer.Unmap(0, nil)
return nil
}
func (i *Image) resource() *_ID3D12Resource {
if i.screen {
return i.graphics.renderTargets[i.graphics.frameIndex]
}
return i.texture
}
func (i *Image) state() _D3D12_RESOURCE_STATES {
if i.screen {
return i.states[i.graphics.frameIndex]
}
return i.states[0]
}
func (i *Image) setState(newState _D3D12_RESOURCE_STATES) {
if i.screen {
i.states[i.graphics.frameIndex] = newState
return
}
i.states[0] = newState
}
func (i *Image) transiteState(newState _D3D12_RESOURCE_STATES) (_D3D12_RESOURCE_BARRIER_Transition, bool) {
if i.state() == newState {
return _D3D12_RESOURCE_BARRIER_Transition{}, false
}
oldState := i.state()
i.setState(newState)
return _D3D12_RESOURCE_BARRIER_Transition{
Type: _D3D12_RESOURCE_BARRIER_TYPE_TRANSITION,
Flags: _D3D12_RESOURCE_BARRIER_FLAG_NONE,
Transition: _D3D12_RESOURCE_TRANSITION_BARRIER{
pResource: i.resource(),
Subresource: _D3D12_RESOURCE_BARRIER_ALL_SUBRESOURCES,
StateBefore: oldState,
StateAfter: newState,
},
}, true
}
func (i *Image) internalSize() (int, int) {
if i.screen {
return i.width, i.height
}
return graphics.InternalImageSize(i.width), graphics.InternalImageSize(i.height)
}
func (i *Image) setAsRenderTarget(drawCommandList *_ID3D12GraphicsCommandList, device *_ID3D12Device, useStencil bool) error {
if err := i.ensureRenderTargetView(device); err != nil {
return err
}
if i.screen {
if useStencil {
return fmt.Errorf("directx: stencils are not available on the screen framebuffer")
}
rtv, err := i.graphics.rtvDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
rtv.Offset(int32(i.graphics.frameIndex), i.graphics.rtvDescriptorSize)
drawCommandList.OMSetRenderTargets([]_D3D12_CPU_DESCRIPTOR_HANDLE{rtv}, false, nil)
return nil
}
rtv, err := i.rtvDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
if !useStencil {
drawCommandList.OMSetRenderTargets([]_D3D12_CPU_DESCRIPTOR_HANDLE{rtv}, false, nil)
return nil
}
if err := i.ensureDepthStencilView(device); err != nil {
return err
}
dsv, err := i.dsvDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
drawCommandList.OMSetStencilRef(0)
drawCommandList.OMSetRenderTargets([]_D3D12_CPU_DESCRIPTOR_HANDLE{rtv}, false, &dsv)
drawCommandList.ClearDepthStencilView(dsv, _D3D12_CLEAR_FLAG_STENCIL, 0, 0, nil)
return nil
}
func (i *Image) ensureRenderTargetView(device *_ID3D12Device) error {
if i.screen {
return nil
}
if i.rtvDescriptorHeap != nil {
return nil
}
h, err := device.CreateDescriptorHeap(&_D3D12_DESCRIPTOR_HEAP_DESC{
Type: _D3D12_DESCRIPTOR_HEAP_TYPE_RTV,
NumDescriptors: 1,
Flags: _D3D12_DESCRIPTOR_HEAP_FLAG_NONE,
NodeMask: 0,
})
if err != nil {
return err
}
i.rtvDescriptorHeap = h
rtv, err := i.rtvDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
device.CreateRenderTargetView(i.texture, nil, rtv)
return nil
}
func (i *Image) ensureDepthStencilView(device *_ID3D12Device) error {
if i.screen {
return fmt.Errorf("directx: stencils are not available on the screen framebuffer")
}
if i.dsvDescriptorHeap != nil {
return nil
}
h, err := device.CreateDescriptorHeap(&_D3D12_DESCRIPTOR_HEAP_DESC{
Type: _D3D12_DESCRIPTOR_HEAP_TYPE_DSV,
NumDescriptors: 1,
Flags: _D3D12_DESCRIPTOR_HEAP_FLAG_NONE,
NodeMask: 0,
})
if err != nil {
return err
}
i.dsvDescriptorHeap = h
dsv, err := i.dsvDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
if i.stencil == nil {
s, err := device.CreateCommittedResource(&_D3D12_HEAP_PROPERTIES{
Type: _D3D12_HEAP_TYPE_DEFAULT,
CPUPageProperty: _D3D12_CPU_PAGE_PROPERTY_UNKNOWN,
MemoryPoolPreference: _D3D12_MEMORY_POOL_UNKNOWN,
CreationNodeMask: 1,
VisibleNodeMask: 1,
}, _D3D12_HEAP_FLAG_NONE, &_D3D12_RESOURCE_DESC{
Dimension: _D3D12_RESOURCE_DIMENSION_TEXTURE2D,
Alignment: 0,
Width: uint64(graphics.InternalImageSize(i.width)),
Height: uint32(graphics.InternalImageSize(i.height)),
DepthOrArraySize: 1,
MipLevels: 0,
Format: _DXGI_FORMAT_D24_UNORM_S8_UINT,
SampleDesc: _DXGI_SAMPLE_DESC{
Count: 1,
Quality: 0,
},
Layout: _D3D12_TEXTURE_LAYOUT_UNKNOWN,
Flags: _D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL,
}, _D3D12_RESOURCE_STATE_DEPTH_WRITE, &_D3D12_CLEAR_VALUE{
Format: _DXGI_FORMAT_D24_UNORM_S8_UINT,
})
if err != nil {
return err
}
i.stencil = s
}
device.CreateDepthStencilView(i.stencil, nil, dsv)
return nil
}
func (i *Image) releaseUploadingStagingBuffers() {
for idx, buf := range i.uploadingStagingBuffers {
buf.Release()
i.uploadingStagingBuffers[idx] = nil
}
i.uploadingStagingBuffers = i.uploadingStagingBuffers[:0]
}
type stencilMode int
const (
prepareStencil stencilMode = iota
drawWithStencil
noStencil
)
type pipelineStateKey struct {
blend graphicsdriver.Blend
stencilMode stencilMode
screen bool
}
type Shader struct {
graphics *Graphics
id graphicsdriver.ShaderID
uniformTypes []shaderir.Type
uniformOffsets []int
vertexShader *_ID3DBlob
pixelShader *_ID3DBlob
pipelineStates map[pipelineStateKey]*_ID3D12PipelineState
}
func (s *Shader) ID() graphicsdriver.ShaderID {
return s.id
}
func (s *Shader) Dispose() {
s.graphics.removeShader(s)
}
func (s *Shader) disposeImpl() {
for c, p := range s.pipelineStates {
p.Release()
delete(s.pipelineStates, c)
}
if s.pixelShader != nil {
s.pixelShader.Release()
s.pixelShader = nil
}
if s.vertexShader != nil {
count := s.vertexShader.Release()
if count == 0 {
for k, v := range vertexShaderCache {
if v == s.vertexShader {
delete(vertexShaderCache, k)
}
}
}
s.vertexShader = nil
}
}
func (s *Shader) pipelineState(blend graphicsdriver.Blend, stencilMode stencilMode, screen bool) (*_ID3D12PipelineState, error) {
key := pipelineStateKey{
blend: blend,
stencilMode: stencilMode,
screen: screen,
}
if state, ok := s.pipelineStates[key]; ok {
return state, nil
}
state, err := s.graphics.pipelineStates.newPipelineState(s.graphics.device, s.vertexShader, s.pixelShader, blend, stencilMode, screen)
if err != nil {
return nil, err
}
if s.pipelineStates == nil {
s.pipelineStates = map[pipelineStateKey]*_ID3D12PipelineState{}
}
s.pipelineStates[key] = state
return state, nil
}
func (s *Shader) adjustUniforms(uniforms []uint32, shader *Shader) []uint32 {
var fs []uint32
var idx int
for i, typ := range shader.uniformTypes {
if len(fs) < s.uniformOffsets[i]/4 {
fs = append(fs, make([]uint32, s.uniformOffsets[i]/4-len(fs))...)
}
n := typ.Uint32Count()
switch typ.Main {
case shaderir.Float:
fs = append(fs, uniforms[idx:idx+1]...)
case shaderir.Int:
fs = append(fs, uniforms[idx:idx+1]...)
case shaderir.Vec2, shaderir.IVec2:
fs = append(fs, uniforms[idx:idx+2]...)
case shaderir.Vec3, shaderir.IVec3:
fs = append(fs, uniforms[idx:idx+3]...)
case shaderir.Vec4, shaderir.IVec4:
fs = append(fs, uniforms[idx:idx+4]...)
case shaderir.Mat2:
fs = append(fs,
uniforms[idx+0], uniforms[idx+2], 0, 0,
uniforms[idx+1], uniforms[idx+3],
)
case shaderir.Mat3:
fs = append(fs,
uniforms[idx+0], uniforms[idx+3], uniforms[idx+6], 0,
uniforms[idx+1], uniforms[idx+4], uniforms[idx+7], 0,
uniforms[idx+2], uniforms[idx+5], uniforms[idx+8],
)
case shaderir.Mat4:
if i == graphics.ProjectionMatrixUniformVariableIndex {
// In DirectX, the NDC's Y direction (upward) and the framebuffer's Y direction (downward) don't
// match. Then, the Y direction must be inverted.
// Invert the sign bits as float32 values.
fs = append(fs,
uniforms[idx+0], uniforms[idx+4], uniforms[idx+8], uniforms[idx+12],
uniforms[idx+1]^(1<<31), uniforms[idx+5]^(1<<31), uniforms[idx+9]^(1<<31), uniforms[idx+13]^(1<<31),
uniforms[idx+2], uniforms[idx+6], uniforms[idx+10], uniforms[idx+14],
uniforms[idx+3], uniforms[idx+7], uniforms[idx+11], uniforms[idx+15],
)
} else {
fs = append(fs,
uniforms[idx+0], uniforms[idx+4], uniforms[idx+8], uniforms[idx+12],
uniforms[idx+1], uniforms[idx+5], uniforms[idx+9], uniforms[idx+13],
uniforms[idx+2], uniforms[idx+6], uniforms[idx+10], uniforms[idx+14],
uniforms[idx+3], uniforms[idx+7], uniforms[idx+11], uniforms[idx+15],
)
}
case shaderir.Array:
// Each element is aligned to the boundary.
switch typ.Sub[0].Main {
case shaderir.Float:
for j := 0; j < typ.Length; j++ {
fs = append(fs, uniforms[idx+j])
if j < typ.Length-1 {
fs = append(fs, 0, 0, 0)
}
}
case shaderir.Int:
for j := 0; j < typ.Length; j++ {
fs = append(fs, uniforms[idx+j])
if j < typ.Length-1 {
fs = append(fs, 0, 0, 0)
}
}
case shaderir.Vec2, shaderir.IVec2:
for j := 0; j < typ.Length; j++ {
fs = append(fs, uniforms[idx+2*j:idx+2*(j+1)]...)
if j < typ.Length-1 {
fs = append(fs, 0, 0)
}
}
case shaderir.Vec3, shaderir.IVec3:
for j := 0; j < typ.Length; j++ {
fs = append(fs, uniforms[idx+3*j:idx+3*(j+1)]...)
if j < typ.Length-1 {
fs = append(fs, 0)
}
}
case shaderir.Vec4, shaderir.IVec4:
fs = append(fs, uniforms[idx:idx+4*typ.Length]...)
case shaderir.Mat2:
for j := 0; j < typ.Length; j++ {
u := uniforms[idx+4*j : idx+4*(j+1)]
fs = append(fs,
u[0], u[2], 0, 0,
u[1], u[3], 0, 0,
)
}
if typ.Length > 0 {
fs = fs[:len(fs)-2]
}
case shaderir.Mat3:
for j := 0; j < typ.Length; j++ {
u := uniforms[idx+9*j : idx+9*(j+1)]
fs = append(fs,
u[0], u[3], u[6], 0,
u[1], u[4], u[7], 0,
u[2], u[5], u[8], 0,
)
}
if typ.Length > 0 {
fs = fs[:len(fs)-1]
}
case shaderir.Mat4:
for j := 0; j < typ.Length; j++ {
u := uniforms[idx+16*j : idx+16*(j+1)]
fs = append(fs,
u[0], u[4], u[8], u[12],
u[1], u[5], u[9], u[13],
u[2], u[6], u[10], u[14],
u[3], u[7], u[11], u[15],
)
}
default:
panic(fmt.Sprintf("directx: not implemented type for uniform variables: %s", typ.String()))
}
default:
panic(fmt.Sprintf("directx: not implemented type for uniform variables: %s", typ.String()))
}
idx += n
}
return fs
}

View File

@ -0,0 +1,433 @@
// Copyright 2023 The Ebitengine Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package directx
import (
"errors"
"fmt"
"unsafe"
"github.com/hajimehoshi/ebiten/v2/internal/graphics"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
)
type Image struct {
graphics *Graphics
id graphicsdriver.ImageID
width int
height int
screen bool
*image12
}
type image12 struct {
states [frameCount]_D3D12_RESOURCE_STATES
texture *_ID3D12Resource
stencil *_ID3D12Resource
rtvDescriptorHeap *_ID3D12DescriptorHeap
dsvDescriptorHeap *_ID3D12DescriptorHeap
uploadingStagingBuffers []*_ID3D12Resource
}
func (i *Image) ID() graphicsdriver.ImageID {
return i.id
}
func (i *Image) Dispose() {
// Dipose the images later as this image might still be used.
i.graphics.removeImage(i)
}
func (i *Image) disposeImpl() {
if i.dsvDescriptorHeap != nil {
i.dsvDescriptorHeap.Release()
i.dsvDescriptorHeap = nil
}
if i.rtvDescriptorHeap != nil {
i.rtvDescriptorHeap.Release()
i.rtvDescriptorHeap = nil
}
if i.stencil != nil {
i.stencil.Release()
i.stencil = nil
}
if i.texture != nil {
i.texture.Release()
i.texture = nil
}
}
func (*Image) IsInvalidated() bool {
return false
}
func (i *Image) ReadPixels(buf []byte, x, y, width, height int) error {
if i.screen {
return errors.New("directx: Pixels cannot be called on the screen")
}
if err := i.graphics.flushCommandList(i.graphics.drawCommandList); err != nil {
return err
}
desc := _D3D12_RESOURCE_DESC{
Dimension: _D3D12_RESOURCE_DIMENSION_TEXTURE2D,
Alignment: 0,
Width: uint64(width),
Height: uint32(height),
DepthOrArraySize: 1,
MipLevels: 0,
Format: _DXGI_FORMAT_R8G8B8A8_UNORM,
SampleDesc: _DXGI_SAMPLE_DESC{
Count: 1,
Quality: 0,
},
Layout: _D3D12_TEXTURE_LAYOUT_UNKNOWN,
Flags: _D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET,
}
layouts, _, _, totalBytes := i.graphics.device.GetCopyableFootprints(&desc, 0, 1, 0)
readingStagingBuffer, err := createBuffer(i.graphics.device, totalBytes, _D3D12_HEAP_TYPE_READBACK)
if err != nil {
return err
}
defer func() {
readingStagingBuffer.Release()
}()
if rb, ok := i.transiteState(_D3D12_RESOURCE_STATE_COPY_SOURCE); ok {
i.graphics.copyCommandList.ResourceBarrier([]_D3D12_RESOURCE_BARRIER_Transition{rb})
}
m, err := readingStagingBuffer.Map(0, &_D3D12_RANGE{0, 0})
if err != nil {
return err
}
dst := _D3D12_TEXTURE_COPY_LOCATION_PlacedFootPrint{
pResource: readingStagingBuffer,
Type: _D3D12_TEXTURE_COPY_TYPE_PLACED_FOOTPRINT,
PlacedFootprint: layouts,
}
src := _D3D12_TEXTURE_COPY_LOCATION_SubresourceIndex{
pResource: i.texture,
Type: _D3D12_TEXTURE_COPY_TYPE_SUBRESOURCE_INDEX,
SubresourceIndex: 0,
}
i.graphics.needFlushCopyCommandList = true
i.graphics.copyCommandList.CopyTextureRegion_PlacedFootPrint_SubresourceIndex(
&dst, 0, 0, 0, &src, &_D3D12_BOX{
left: uint32(x),
top: uint32(y),
front: 0,
right: uint32(x + width),
bottom: uint32(y + height),
back: 1,
})
if err := i.graphics.flushCommandList(i.graphics.copyCommandList); err != nil {
return err
}
dstBytes := unsafe.Slice((*byte)(unsafe.Pointer(m)), totalBytes)
for j := 0; j < height; j++ {
copy(buf[j*width*4:(j+1)*width*4], dstBytes[j*int(layouts.Footprint.RowPitch):])
}
readingStagingBuffer.Unmap(0, nil)
return nil
}
func (i *Image) WritePixels(args []*graphicsdriver.WritePixelsArgs) error {
if i.screen {
return errors.New("directx: WritePixels cannot be called on the screen")
}
if err := i.graphics.flushCommandList(i.graphics.drawCommandList); err != nil {
return err
}
minX := i.width
minY := i.height
maxX := 0
maxY := 0
for _, a := range args {
if minX > a.X {
minX = a.X
}
if minY > a.Y {
minY = a.Y
}
if maxX < a.X+a.Width {
maxX = a.X + a.Width
}
if maxY < a.Y+a.Height {
maxY = a.Y + a.Height
}
}
desc := _D3D12_RESOURCE_DESC{
Dimension: _D3D12_RESOURCE_DIMENSION_TEXTURE2D,
Alignment: 0,
Width: uint64(maxX - minX),
Height: uint32(maxY - minY),
DepthOrArraySize: 1,
MipLevels: 0,
Format: _DXGI_FORMAT_R8G8B8A8_UNORM,
SampleDesc: _DXGI_SAMPLE_DESC{
Count: 1,
Quality: 0,
},
Layout: _D3D12_TEXTURE_LAYOUT_UNKNOWN,
Flags: _D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET,
}
layouts, _, _, totalBytes := i.graphics.device.GetCopyableFootprints(&desc, 0, 1, 0)
uploadingStagingBuffer, err := createBuffer(i.graphics.device, totalBytes, _D3D12_HEAP_TYPE_UPLOAD)
if err != nil {
return err
}
i.uploadingStagingBuffers = append(i.uploadingStagingBuffers, uploadingStagingBuffer)
if rb, ok := i.transiteState(_D3D12_RESOURCE_STATE_COPY_DEST); ok {
i.graphics.copyCommandList.ResourceBarrier([]_D3D12_RESOURCE_BARRIER_Transition{rb})
}
m, err := uploadingStagingBuffer.Map(0, &_D3D12_RANGE{0, 0})
if err != nil {
return err
}
i.graphics.needFlushCopyCommandList = true
srcBytes := unsafe.Slice((*byte)(unsafe.Pointer(m)), totalBytes)
for _, a := range args {
for j := 0; j < a.Height; j++ {
copy(srcBytes[((a.Y-minY)+j)*int(layouts.Footprint.RowPitch)+(a.X-minX)*4:], a.Pixels[j*a.Width*4:(j+1)*a.Width*4])
}
}
for _, a := range args {
dst := _D3D12_TEXTURE_COPY_LOCATION_SubresourceIndex{
pResource: i.texture,
Type: _D3D12_TEXTURE_COPY_TYPE_SUBRESOURCE_INDEX,
SubresourceIndex: 0,
}
src := _D3D12_TEXTURE_COPY_LOCATION_PlacedFootPrint{
pResource: uploadingStagingBuffer,
Type: _D3D12_TEXTURE_COPY_TYPE_PLACED_FOOTPRINT,
PlacedFootprint: layouts,
}
i.graphics.copyCommandList.CopyTextureRegion_SubresourceIndex_PlacedFootPrint(
&dst, uint32(a.X), uint32(a.Y), 0, &src, &_D3D12_BOX{
left: uint32(a.X - minX),
top: uint32(a.Y - minY),
front: 0,
right: uint32(a.X - minX + a.Width),
bottom: uint32(a.Y - minY + a.Height),
back: 1,
})
}
uploadingStagingBuffer.Unmap(0, nil)
return nil
}
func (i *Image) resource() *_ID3D12Resource {
if i.screen {
return i.graphics.renderTargets[i.graphics.frameIndex]
}
return i.texture
}
func (i *Image) state() _D3D12_RESOURCE_STATES {
if i.screen {
return i.states[i.graphics.frameIndex]
}
return i.states[0]
}
func (i *Image) setState(newState _D3D12_RESOURCE_STATES) {
if i.screen {
i.states[i.graphics.frameIndex] = newState
return
}
i.states[0] = newState
}
func (i *Image) transiteState(newState _D3D12_RESOURCE_STATES) (_D3D12_RESOURCE_BARRIER_Transition, bool) {
if i.state() == newState {
return _D3D12_RESOURCE_BARRIER_Transition{}, false
}
oldState := i.state()
i.setState(newState)
return _D3D12_RESOURCE_BARRIER_Transition{
Type: _D3D12_RESOURCE_BARRIER_TYPE_TRANSITION,
Flags: _D3D12_RESOURCE_BARRIER_FLAG_NONE,
Transition: _D3D12_RESOURCE_TRANSITION_BARRIER{
pResource: i.resource(),
Subresource: _D3D12_RESOURCE_BARRIER_ALL_SUBRESOURCES,
StateBefore: oldState,
StateAfter: newState,
},
}, true
}
func (i *Image) internalSize() (int, int) {
if i.screen {
return i.width, i.height
}
return graphics.InternalImageSize(i.width), graphics.InternalImageSize(i.height)
}
func (i *Image) setAsRenderTarget(drawCommandList *_ID3D12GraphicsCommandList, device *_ID3D12Device, useStencil bool) error {
if err := i.ensureRenderTargetView(device); err != nil {
return err
}
if i.screen {
if useStencil {
return fmt.Errorf("directx: stencils are not available on the screen framebuffer")
}
rtv, err := i.graphics.rtvDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
rtv.Offset(int32(i.graphics.frameIndex), i.graphics.rtvDescriptorSize)
drawCommandList.OMSetRenderTargets([]_D3D12_CPU_DESCRIPTOR_HANDLE{rtv}, false, nil)
return nil
}
rtv, err := i.rtvDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
if !useStencil {
drawCommandList.OMSetRenderTargets([]_D3D12_CPU_DESCRIPTOR_HANDLE{rtv}, false, nil)
return nil
}
if err := i.ensureDepthStencilView(device); err != nil {
return err
}
dsv, err := i.dsvDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
drawCommandList.OMSetStencilRef(0)
drawCommandList.OMSetRenderTargets([]_D3D12_CPU_DESCRIPTOR_HANDLE{rtv}, false, &dsv)
drawCommandList.ClearDepthStencilView(dsv, _D3D12_CLEAR_FLAG_STENCIL, 0, 0, nil)
return nil
}
func (i *Image) ensureRenderTargetView(device *_ID3D12Device) error {
if i.screen {
return nil
}
if i.rtvDescriptorHeap != nil {
return nil
}
h, err := device.CreateDescriptorHeap(&_D3D12_DESCRIPTOR_HEAP_DESC{
Type: _D3D12_DESCRIPTOR_HEAP_TYPE_RTV,
NumDescriptors: 1,
Flags: _D3D12_DESCRIPTOR_HEAP_FLAG_NONE,
NodeMask: 0,
})
if err != nil {
return err
}
i.rtvDescriptorHeap = h
rtv, err := i.rtvDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
device.CreateRenderTargetView(i.texture, nil, rtv)
return nil
}
func (i *Image) ensureDepthStencilView(device *_ID3D12Device) error {
if i.screen {
return fmt.Errorf("directx: stencils are not available on the screen framebuffer")
}
if i.dsvDescriptorHeap != nil {
return nil
}
h, err := device.CreateDescriptorHeap(&_D3D12_DESCRIPTOR_HEAP_DESC{
Type: _D3D12_DESCRIPTOR_HEAP_TYPE_DSV,
NumDescriptors: 1,
Flags: _D3D12_DESCRIPTOR_HEAP_FLAG_NONE,
NodeMask: 0,
})
if err != nil {
return err
}
i.dsvDescriptorHeap = h
dsv, err := i.dsvDescriptorHeap.GetCPUDescriptorHandleForHeapStart()
if err != nil {
return err
}
if i.stencil == nil {
s, err := device.CreateCommittedResource(&_D3D12_HEAP_PROPERTIES{
Type: _D3D12_HEAP_TYPE_DEFAULT,
CPUPageProperty: _D3D12_CPU_PAGE_PROPERTY_UNKNOWN,
MemoryPoolPreference: _D3D12_MEMORY_POOL_UNKNOWN,
CreationNodeMask: 1,
VisibleNodeMask: 1,
}, _D3D12_HEAP_FLAG_NONE, &_D3D12_RESOURCE_DESC{
Dimension: _D3D12_RESOURCE_DIMENSION_TEXTURE2D,
Alignment: 0,
Width: uint64(graphics.InternalImageSize(i.width)),
Height: uint32(graphics.InternalImageSize(i.height)),
DepthOrArraySize: 1,
MipLevels: 0,
Format: _DXGI_FORMAT_D24_UNORM_S8_UINT,
SampleDesc: _DXGI_SAMPLE_DESC{
Count: 1,
Quality: 0,
},
Layout: _D3D12_TEXTURE_LAYOUT_UNKNOWN,
Flags: _D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL,
}, _D3D12_RESOURCE_STATE_DEPTH_WRITE, &_D3D12_CLEAR_VALUE{
Format: _DXGI_FORMAT_D24_UNORM_S8_UINT,
})
if err != nil {
return err
}
i.stencil = s
}
device.CreateDepthStencilView(i.stencil, nil, dsv)
return nil
}
func (i *Image) releaseUploadingStagingBuffers() {
for idx, buf := range i.uploadingStagingBuffers {
buf.Release()
i.uploadingStagingBuffers[idx] = nil
}
i.uploadingStagingBuffers = i.uploadingStagingBuffers[:0]
}

View File

@ -0,0 +1,227 @@
// Copyright 2023 The Ebitengine Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package directx
import (
"fmt"
"github.com/hajimehoshi/ebiten/v2/internal/graphics"
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
"github.com/hajimehoshi/ebiten/v2/internal/shaderir"
)
type stencilMode int
const (
prepareStencil stencilMode = iota
drawWithStencil
noStencil
)
type pipelineStateKey struct {
blend graphicsdriver.Blend
stencilMode stencilMode
screen bool
}
type Shader struct {
graphics *Graphics
id graphicsdriver.ShaderID
uniformTypes []shaderir.Type
uniformOffsets []int
vertexShader *_ID3DBlob
pixelShader *_ID3DBlob
pipelineStates map[pipelineStateKey]*_ID3D12PipelineState
}
func (s *Shader) ID() graphicsdriver.ShaderID {
return s.id
}
func (s *Shader) Dispose() {
s.graphics.removeShader(s)
}
func (s *Shader) disposeImpl() {
for c, p := range s.pipelineStates {
p.Release()
delete(s.pipelineStates, c)
}
if s.pixelShader != nil {
s.pixelShader.Release()
s.pixelShader = nil
}
if s.vertexShader != nil {
count := s.vertexShader.Release()
if count == 0 {
for k, v := range vertexShaderCache {
if v == s.vertexShader {
delete(vertexShaderCache, k)
}
}
}
s.vertexShader = nil
}
}
func (s *Shader) pipelineState(blend graphicsdriver.Blend, stencilMode stencilMode, screen bool) (*_ID3D12PipelineState, error) {
key := pipelineStateKey{
blend: blend,
stencilMode: stencilMode,
screen: screen,
}
if state, ok := s.pipelineStates[key]; ok {
return state, nil
}
state, err := s.graphics.pipelineStates.newPipelineState(s.graphics.device, s.vertexShader, s.pixelShader, blend, stencilMode, screen)
if err != nil {
return nil, err
}
if s.pipelineStates == nil {
s.pipelineStates = map[pipelineStateKey]*_ID3D12PipelineState{}
}
s.pipelineStates[key] = state
return state, nil
}
func (s *Shader) adjustUniforms(uniforms []uint32, shader *Shader) []uint32 {
var fs []uint32
var idx int
for i, typ := range shader.uniformTypes {
if len(fs) < s.uniformOffsets[i]/4 {
fs = append(fs, make([]uint32, s.uniformOffsets[i]/4-len(fs))...)
}
n := typ.Uint32Count()
switch typ.Main {
case shaderir.Float:
fs = append(fs, uniforms[idx:idx+1]...)
case shaderir.Int:
fs = append(fs, uniforms[idx:idx+1]...)
case shaderir.Vec2, shaderir.IVec2:
fs = append(fs, uniforms[idx:idx+2]...)
case shaderir.Vec3, shaderir.IVec3:
fs = append(fs, uniforms[idx:idx+3]...)
case shaderir.Vec4, shaderir.IVec4:
fs = append(fs, uniforms[idx:idx+4]...)
case shaderir.Mat2:
fs = append(fs,
uniforms[idx+0], uniforms[idx+2], 0, 0,
uniforms[idx+1], uniforms[idx+3],
)
case shaderir.Mat3:
fs = append(fs,
uniforms[idx+0], uniforms[idx+3], uniforms[idx+6], 0,
uniforms[idx+1], uniforms[idx+4], uniforms[idx+7], 0,
uniforms[idx+2], uniforms[idx+5], uniforms[idx+8],
)
case shaderir.Mat4:
if i == graphics.ProjectionMatrixUniformVariableIndex {
// In DirectX, the NDC's Y direction (upward) and the framebuffer's Y direction (downward) don't
// match. Then, the Y direction must be inverted.
// Invert the sign bits as float32 values.
fs = append(fs,
uniforms[idx+0], uniforms[idx+4], uniforms[idx+8], uniforms[idx+12],
uniforms[idx+1]^(1<<31), uniforms[idx+5]^(1<<31), uniforms[idx+9]^(1<<31), uniforms[idx+13]^(1<<31),
uniforms[idx+2], uniforms[idx+6], uniforms[idx+10], uniforms[idx+14],
uniforms[idx+3], uniforms[idx+7], uniforms[idx+11], uniforms[idx+15],
)
} else {
fs = append(fs,
uniforms[idx+0], uniforms[idx+4], uniforms[idx+8], uniforms[idx+12],
uniforms[idx+1], uniforms[idx+5], uniforms[idx+9], uniforms[idx+13],
uniforms[idx+2], uniforms[idx+6], uniforms[idx+10], uniforms[idx+14],
uniforms[idx+3], uniforms[idx+7], uniforms[idx+11], uniforms[idx+15],
)
}
case shaderir.Array:
// Each element is aligned to the boundary.
switch typ.Sub[0].Main {
case shaderir.Float:
for j := 0; j < typ.Length; j++ {
fs = append(fs, uniforms[idx+j])
if j < typ.Length-1 {
fs = append(fs, 0, 0, 0)
}
}
case shaderir.Int:
for j := 0; j < typ.Length; j++ {
fs = append(fs, uniforms[idx+j])
if j < typ.Length-1 {
fs = append(fs, 0, 0, 0)
}
}
case shaderir.Vec2, shaderir.IVec2:
for j := 0; j < typ.Length; j++ {
fs = append(fs, uniforms[idx+2*j:idx+2*(j+1)]...)
if j < typ.Length-1 {
fs = append(fs, 0, 0)
}
}
case shaderir.Vec3, shaderir.IVec3:
for j := 0; j < typ.Length; j++ {
fs = append(fs, uniforms[idx+3*j:idx+3*(j+1)]...)
if j < typ.Length-1 {
fs = append(fs, 0)
}
}
case shaderir.Vec4, shaderir.IVec4:
fs = append(fs, uniforms[idx:idx+4*typ.Length]...)
case shaderir.Mat2:
for j := 0; j < typ.Length; j++ {
u := uniforms[idx+4*j : idx+4*(j+1)]
fs = append(fs,
u[0], u[2], 0, 0,
u[1], u[3], 0, 0,
)
}
if typ.Length > 0 {
fs = fs[:len(fs)-2]
}
case shaderir.Mat3:
for j := 0; j < typ.Length; j++ {
u := uniforms[idx+9*j : idx+9*(j+1)]
fs = append(fs,
u[0], u[3], u[6], 0,
u[1], u[4], u[7], 0,
u[2], u[5], u[8], 0,
)
}
if typ.Length > 0 {
fs = fs[:len(fs)-1]
}
case shaderir.Mat4:
for j := 0; j < typ.Length; j++ {
u := uniforms[idx+16*j : idx+16*(j+1)]
fs = append(fs,
u[0], u[4], u[8], u[12],
u[1], u[5], u[9], u[13],
u[2], u[6], u[10], u[14],
u[3], u[7], u[11], u[15],
)
}
default:
panic(fmt.Sprintf("directx: not implemented type for uniform variables: %s", typ.String()))
}
default:
panic(fmt.Sprintf("directx: not implemented type for uniform variables: %s", typ.String()))
}
idx += n
}
return fs
}