// Copyright 2017 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package audio import ( "fmt" "io" "math" ) // InfiniteLoop represents a looped stream which never ends. type InfiniteLoop struct { src io.ReadSeeker lstart int64 llength int64 pos int64 bitDepthInBytes int bytesPerSample int // extra is the remainder in the case when the read byte sizes are not multiple of the bit depth. extra []byte // afterLoop is data after the loop. afterLoop []byte // blending represents whether the loop start and afterLoop are blended or not. blending bool noBlendForTesting bool } // NewInfiniteLoop creates a new infinite loop stream with a source stream and length in bytes. // // src is a signed 16bit integer little endian stream, 2 channels (stereo). // // If the loop's total length is exactly the same as src's length, you might hear noises around the loop joint. // This noise can be heard especially when src is decoded from a lossy compression format like Ogg/Vorbis and MP3. // In this case, try to add more (about 0.1[s]) data to src after the loop end. // If src has data after the loop end, an InfiniteLoop uses part of the data to blend with the loop start // to make the loop joint smooth. func NewInfiniteLoop(src io.ReadSeeker, length int64) *InfiniteLoop { return newInfiniteLoopWithIntro(src, 0, length, bitDepthInBytesInt16) } // NewInfiniteLoopF32 creates a new infinite loop stream with a source stream and length in bytes. // // src is a 32bit float little endian stream, 2 channels (stereo). // // If the loop's total length is exactly the same as src's length, you might hear noises around the loop joint. // This noise can be heard especially when src is decoded from a lossy compression format like Ogg/Vorbis and MP3. // In this case, try to add more (about 0.1[s]) data to src after the loop end. // If src has data after the loop end, an InfiniteLoop uses part of the data to blend with the loop start // to make the loop joint smooth. func NewInfiniteLoopF32(src io.ReadSeeker, length int64) *InfiniteLoop { return newInfiniteLoopWithIntro(src, 0, length, bitDepthInBytesFloat32) } // NewInfiniteLoopWithIntro creates a new infinite loop stream with an intro part. // NewInfiniteLoopWithIntro accepts a source stream src, introLength in bytes and loopLength in bytes. // // src is a signed 16bit integer little endian stream, 2 channels (stereo). // // If the loop's total length is exactly the same as src's length, you might hear noises around the loop joint. // This noise can be heard especially when src is decoded from a lossy compression format like Ogg/Vorbis and MP3. // In this case, try to add more (about 0.1[s]) data to src after the loop end. // If src has data after the loop end, an InfiniteLoop uses part of the data to blend with the loop start // to make the loop joint smooth. func NewInfiniteLoopWithIntro(src io.ReadSeeker, introLength int64, loopLength int64) *InfiniteLoop { return newInfiniteLoopWithIntro(src, introLength, loopLength, bitDepthInBytesInt16) } // NewInfiniteLoopWithIntroF32 creates a new infinite loop stream with an intro part. // NewInfiniteLoopWithIntroF32 accepts a source stream src, introLength in bytes and loopLength in bytes. // // src is a 32bit float little endian stream, 2 channels (stereo). // // If the loop's total length is exactly the same as src's length, you might hear noises around the loop joint. // This noise can be heard especially when src is decoded from a lossy compression format like Ogg/Vorbis and MP3. // In this case, try to add more (about 0.1[s]) data to src after the loop end. // If src has data after the loop end, an InfiniteLoop uses part of the data to blend with the loop start // to make the loop joint smooth. func NewInfiniteLoopWithIntroF32(src io.ReadSeeker, introLength int64, loopLength int64) *InfiniteLoop { return newInfiniteLoopWithIntro(src, introLength, loopLength, bitDepthInBytesFloat32) } func newInfiniteLoopWithIntro(src io.ReadSeeker, introLength int64, loopLength int64, bitDepthInBytes int) *InfiniteLoop { bytesPerSample := bitDepthInBytes * channelCount return &InfiniteLoop{ src: src, lstart: introLength / int64(bytesPerSample) * int64(bytesPerSample), llength: loopLength / int64(bytesPerSample) * int64(bytesPerSample), pos: -1, bitDepthInBytes: bitDepthInBytes, bytesPerSample: bytesPerSample, } } func (i *InfiniteLoop) length() int64 { return i.lstart + i.llength } func (i *InfiniteLoop) ensurePos() error { if i.pos >= 0 { return nil } pos, err := i.src.Seek(0, io.SeekCurrent) if err != nil { return err } if pos >= i.length() { return fmt.Errorf("audio: stream position must be less than the specified length") } i.pos = pos return nil } func (i *InfiniteLoop) blendRate(pos int64) float32 { if pos < i.lstart { return 0 } if pos >= i.lstart+int64(len(i.afterLoop)) { return 0 } p := (pos - i.lstart) / int64(i.bytesPerSample) l := len(i.afterLoop) / i.bytesPerSample return 1 - float32(p)/float32(l) } // Read is implementation of ReadSeeker's Read. func (i *InfiniteLoop) Read(b []byte) (int, error) { if err := i.ensurePos(); err != nil { return 0, err } if i.pos+int64(len(b)) > i.length() { b = b[:i.length()-i.pos] } extralen := len(i.extra) copy(b, i.extra) i.extra = i.extra[:0] n, err := i.src.Read(b[extralen:]) n += extralen i.pos += int64(n) if i.pos > i.length() { panic(fmt.Sprintf("audio: position must be <= length but not at (*InfiniteLoop).Read: pos: %d, length: %d", i.pos, i.length())) } // Save the remainder part to extra. This will be used at the next Read. if rem := n % i.bitDepthInBytes; rem != 0 { i.extra = append(i.extra, b[n-rem:n]...) b = b[:n-rem] n = n - rem } // Blend afterLoop and the loop start to reduce noises (#1888). // Ideally, afterLoop and the loop start should be identical, but they can have very slight differences. if !i.noBlendForTesting && i.blending && i.pos >= i.lstart && i.pos-int64(n) < i.lstart+int64(len(i.afterLoop)) { if n%i.bitDepthInBytes != 0 { panic(fmt.Sprintf("audio: n must be a multiple of bit depth %d [bytes] but not: %d", i.bitDepthInBytes, n)) } for idx := 0; idx < n/i.bitDepthInBytes; idx++ { abspos := i.pos - int64(n) + int64(idx)*int64(i.bitDepthInBytes) rate := i.blendRate(abspos) if rate == 0 { continue } relpos := abspos - i.lstart switch i.bitDepthInBytes { case 2: afterLoop := int16(i.afterLoop[relpos]) | (int16(i.afterLoop[relpos+1]) << 8) orig := int16(b[2*idx]) | (int16(b[2*idx+1]) << 8) newVal := int16(float32(afterLoop)*rate + float32(orig)*(1-rate)) b[2*idx] = byte(newVal) b[2*idx+1] = byte(newVal >> 8) case 4: afterLoop := math.Float32frombits(uint32(i.afterLoop[relpos]) | (uint32(i.afterLoop[relpos+1]) << 8) | (uint32(i.afterLoop[relpos+2]) << 16) | (uint32(i.afterLoop[relpos+3]) << 24)) orig := math.Float32frombits(uint32(b[4*idx]) | (uint32(b[4*idx+1]) << 8) | (uint32(b[4*idx+2]) << 16) | (uint32(b[4*idx+3]) << 24)) newVal := float32(afterLoop*rate + orig*(1-rate)) newValBits := math.Float32bits(newVal) b[4*idx] = byte(newValBits) b[4*idx+1] = byte(newValBits >> 8) b[4*idx+2] = byte(newValBits >> 16) b[4*idx+3] = byte(newValBits >> 24) default: panic("not reached") } } } if err != nil && err != io.EOF { return 0, err } // Read the afterLoop part if necessary. if i.pos == i.length() && err == nil { if i.afterLoop == nil { buflen := int64(256 * i.bytesPerSample) if buflen > i.length() { buflen = i.length() } buf := make([]byte, buflen) pos := 0 for pos < len(buf) { n, err := i.src.Read(buf[pos:]) if err != nil && err != io.EOF { return 0, err } pos += n if err == io.EOF { break } } i.afterLoop = buf[:pos] } if len(i.afterLoop) > 0 { i.blending = true } } if i.pos == i.length() || err == io.EOF { // Ignore the new position returned by Seek since the source position might not be match with the position // managed by this. if _, err := i.src.Seek(i.lstart, io.SeekStart); err != nil { return 0, err } i.pos = i.lstart } return n, nil } // Seek is implementation of ReadSeeker's Seek. func (i *InfiniteLoop) Seek(offset int64, whence int) (int64, error) { i.blending = false if err := i.ensurePos(); err != nil { return 0, err } next := int64(0) switch whence { case io.SeekStart: next = offset case io.SeekCurrent: next = i.pos + offset case io.SeekEnd: return 0, fmt.Errorf("audio: whence must be io.SeekStart or io.SeekCurrent for InfiniteLoop") } if next < 0 { return 0, fmt.Errorf("audio: position must >= 0") } if next > i.lstart { next = ((next - i.lstart) % i.llength) + i.lstart } // Ignore the new position returned by Seek since the source position might not be match with the position // managed by this. if _, err := i.src.Seek(next, io.SeekStart); err != nil { return 0, err } i.pos = next return i.pos, nil }