// Copyright 2019 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //go:build example // +build example package main import ( "bytes" "errors" "fmt" "image" "image/color" _ "image/png" "log" "math" "sort" "github.com/hajimehoshi/ebiten/v2" "github.com/hajimehoshi/ebiten/v2/ebitenutil" "github.com/hajimehoshi/ebiten/v2/examples/resources/images" "github.com/hajimehoshi/ebiten/v2/inpututil" ) const ( screenWidth = 240 screenHeight = 240 padding = 20 ) var ( bgImage *ebiten.Image shadowImage = ebiten.NewImage(screenWidth, screenHeight) triangleImage = ebiten.NewImage(screenWidth, screenHeight) ) func init() { // Decode an image from the image file's byte slice. // Now the byte slice is generated with //go:generate for Go 1.15 or older. // If you use Go 1.16 or newer, it is strongly recommended to use //go:embed to embed the image file. // See https://pkg.go.dev/embed for more details. img, _, err := image.Decode(bytes.NewReader(images.Tile_png)) if err != nil { log.Fatal(err) } bgImage = ebiten.NewImageFromImage(img) triangleImage.Fill(color.White) } type line struct { X1, Y1, X2, Y2 float64 } func (l *line) angle() float64 { return math.Atan2(l.Y2-l.Y1, l.X2-l.X1) } type object struct { walls []line } func (o object) points() [][2]float64 { // Get one of the endpoints for all segments, // + the startpoint of the first one, for non-closed paths var points [][2]float64 for _, wall := range o.walls { points = append(points, [2]float64{wall.X2, wall.Y2}) } p := [2]float64{o.walls[0].X1, o.walls[0].Y1} if p[0] != points[len(points)-1][0] && p[1] != points[len(points)-1][1] { points = append(points, [2]float64{o.walls[0].X1, o.walls[0].Y1}) } return points } func newRay(x, y, length, angle float64) line { return line{ X1: x, Y1: y, X2: x + length*math.Cos(angle), Y2: y + length*math.Sin(angle), } } // intersection calculates the intersection of given two lines. func intersection(l1, l2 line) (float64, float64, bool) { // https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection#Given_two_points_on_each_line denom := (l1.X1-l1.X2)*(l2.Y1-l2.Y2) - (l1.Y1-l1.Y2)*(l2.X1-l2.X2) tNum := (l1.X1-l2.X1)*(l2.Y1-l2.Y2) - (l1.Y1-l2.Y1)*(l2.X1-l2.X2) uNum := -((l1.X1-l1.X2)*(l1.Y1-l2.Y1) - (l1.Y1-l1.Y2)*(l1.X1-l2.X1)) if denom == 0 { return 0, 0, false } t := tNum / denom if t > 1 || t < 0 { return 0, 0, false } u := uNum / denom if u > 1 || u < 0 { return 0, 0, false } x := l1.X1 + t*(l1.X2-l1.X1) y := l1.Y1 + t*(l1.Y2-l1.Y1) return x, y, true } // rayCasting returns a slice of line originating from point cx, cy and intersecting with objects func rayCasting(cx, cy float64, objects []object) []line { const rayLength = 1000 // something large enough to reach all objects var rays []line for _, obj := range objects { // Cast two rays per point for _, p := range obj.points() { l := line{cx, cy, p[0], p[1]} angle := l.angle() for _, offset := range []float64{-0.005, 0.005} { points := [][2]float64{} ray := newRay(cx, cy, rayLength, angle+offset) // Unpack all objects for _, o := range objects { for _, wall := range o.walls { if px, py, ok := intersection(ray, wall); ok { points = append(points, [2]float64{px, py}) } } } // Find the point closest to start of ray min := math.Inf(1) minI := -1 for i, p := range points { d2 := (cx-p[0])*(cx-p[0]) + (cy-p[1])*(cy-p[1]) if d2 < min { min = d2 minI = i } } rays = append(rays, line{cx, cy, points[minI][0], points[minI][1]}) } } } // Sort rays based on angle, otherwise light triangles will not come out right sort.Slice(rays, func(i int, j int) bool { return rays[i].angle() < rays[j].angle() }) return rays } func (g *Game) handleMovement() { if ebiten.IsKeyPressed(ebiten.KeyD) || ebiten.IsKeyPressed(ebiten.KeyArrowRight) { g.px += 4 } if ebiten.IsKeyPressed(ebiten.KeyS) || ebiten.IsKeyPressed(ebiten.KeyArrowDown) { g.py += 4 } if ebiten.IsKeyPressed(ebiten.KeyA) || ebiten.IsKeyPressed(ebiten.KeyArrowLeft) { g.px -= 4 } if ebiten.IsKeyPressed(ebiten.KeyW) || ebiten.IsKeyPressed(ebiten.KeyArrowUp) { g.py -= 4 } // +1/-1 is to stop player before it reaches the border if g.px >= screenWidth-padding { g.px = screenWidth - padding - 1 } if g.px <= padding { g.px = padding + 1 } if g.py >= screenHeight-padding { g.py = screenHeight - padding - 1 } if g.py <= padding { g.py = padding + 1 } } func rayVertices(x1, y1, x2, y2, x3, y3 float64) []ebiten.Vertex { return []ebiten.Vertex{ {DstX: float32(x1), DstY: float32(y1), SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1}, {DstX: float32(x2), DstY: float32(y2), SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1}, {DstX: float32(x3), DstY: float32(y3), SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1}, } } type Game struct { showRays bool px, py int objects []object } func (g *Game) Update() error { if inpututil.IsKeyJustPressed(ebiten.KeyEscape) { return errors.New("game ended by player") } if inpututil.IsKeyJustPressed(ebiten.KeyR) { g.showRays = !g.showRays } g.handleMovement() return nil } func (g *Game) Draw(screen *ebiten.Image) { // Reset the shadowImage shadowImage.Fill(color.Black) rays := rayCasting(float64(g.px), float64(g.py), g.objects) // Subtract ray triangles from shadow opt := &ebiten.DrawTrianglesOptions{} opt.Address = ebiten.AddressRepeat opt.CompositeMode = ebiten.CompositeModeSourceOut for i, line := range rays { nextLine := rays[(i+1)%len(rays)] // Draw triangle of area between rays v := rayVertices(float64(g.px), float64(g.py), nextLine.X2, nextLine.Y2, line.X2, line.Y2) shadowImage.DrawTriangles(v, []uint16{0, 1, 2}, triangleImage, opt) } // Draw background screen.DrawImage(bgImage, nil) if g.showRays { // Draw rays for _, r := range rays { ebitenutil.DrawLine(screen, r.X1, r.Y1, r.X2, r.Y2, color.RGBA{255, 255, 0, 150}) } } // Draw shadow op := &ebiten.DrawImageOptions{} op.ColorM.Scale(1, 1, 1, 0.7) screen.DrawImage(shadowImage, op) // Draw walls for _, obj := range g.objects { for _, w := range obj.walls { ebitenutil.DrawLine(screen, w.X1, w.Y1, w.X2, w.Y2, color.RGBA{255, 0, 0, 255}) } } // Draw player as a rect ebitenutil.DrawRect(screen, float64(g.px)-2, float64(g.py)-2, 4, 4, color.Black) ebitenutil.DrawRect(screen, float64(g.px)-1, float64(g.py)-1, 2, 2, color.RGBA{255, 100, 100, 255}) if g.showRays { ebitenutil.DebugPrintAt(screen, "R: hide rays", padding, 0) } else { ebitenutil.DebugPrintAt(screen, "R: show rays", padding, 0) } ebitenutil.DebugPrintAt(screen, "WASD: move", 160, 0) ebitenutil.DebugPrintAt(screen, fmt.Sprintf("TPS: %0.2f", ebiten.CurrentTPS()), 51, 51) ebitenutil.DebugPrintAt(screen, fmt.Sprintf("Rays: 2*%d", len(rays)/2), padding, 222) } func (g *Game) Layout(outsideWidth, outsideHeight int) (int, int) { return screenWidth, screenHeight } func rect(x, y, w, h float64) []line { return []line{ {x, y, x, y + h}, {x, y + h, x + w, y + h}, {x + w, y + h, x + w, y}, {x + w, y, x, y}, } } func main() { g := &Game{ px: screenWidth / 2, py: screenHeight / 2, } // Add outer walls g.objects = append(g.objects, object{rect(padding, padding, screenWidth-2*padding, screenHeight-2*padding)}) // Angled wall g.objects = append(g.objects, object{[]line{{50, 110, 100, 150}}}) // Rectangles g.objects = append(g.objects, object{rect(45, 50, 70, 20)}) g.objects = append(g.objects, object{rect(150, 50, 30, 60)}) ebiten.SetWindowSize(screenWidth*2, screenHeight*2) ebiten.SetWindowTitle("Ray casting and shadows (Ebiten demo)") if err := ebiten.RunGame(g); err != nil { log.Fatal(err) } }