// Copyright 2022 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ui import ( "fmt" "image" "math" "github.com/hajimehoshi/ebiten/v2/internal/atlas" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" "github.com/hajimehoshi/ebiten/v2/internal/mipmap" ) // panicOnErrorOnReadingPixels indicates whether reading pixels panics on an error or not. // This value is set only on testing. var panicOnErrorOnReadingPixels bool func SetPanicOnErrorOnReadingPixelsForTesting(value bool) { panicOnErrorOnReadingPixels = value } const bigOffscreenScale = 2 type Image struct { mipmap *mipmap.Mipmap width int height int imageType atlas.ImageType dotsBuffer map[image.Point][4]byte // bigOffscreenBuffer is a double-sized offscreen for anti-alias rendering. bigOffscreenBuffer *bigOffscreenImage // modifyCallback is a callback called when DrawTriangles or WritePixels is called. // modifyCallback is useful to detect whether the image is manipulated or not after a certain time. modifyCallback func() tmpVerticesForFill []float32 } func NewImage(width, height int, imageType atlas.ImageType) *Image { return &Image{ mipmap: mipmap.New(width, height, imageType), width: width, height: height, imageType: imageType, } } func (i *Image) MarkDisposed() { if i.mipmap == nil { return } if i.bigOffscreenBuffer != nil { i.bigOffscreenBuffer.markDisposed() i.bigOffscreenBuffer = nil } i.mipmap.MarkDisposed() i.mipmap = nil i.dotsBuffer = nil i.modifyCallback = nil } func (i *Image) DrawTriangles(srcs [graphics.ShaderImageCount]*Image, vertices []float32, indices []uint16, blend graphicsdriver.Blend, dstRegion image.Rectangle, srcRegions [graphics.ShaderImageCount]image.Rectangle, shader *Shader, uniforms []uint32, evenOdd bool, canSkipMipmap bool, antialias bool) { if i.modifyCallback != nil { i.modifyCallback() } if antialias { // Flush the other buffer to make the buffers exclusive. i.flushDotsBufferIfNeeded() if i.bigOffscreenBuffer == nil { var imageType atlas.ImageType switch i.imageType { case atlas.ImageTypeRegular, atlas.ImageTypeUnmanaged: imageType = atlas.ImageTypeUnmanaged case atlas.ImageTypeScreen, atlas.ImageTypeVolatile: imageType = atlas.ImageTypeVolatile default: panic(fmt.Sprintf("ui: unexpected image type: %d", imageType)) } i.bigOffscreenBuffer = newBigOffscreenImage(i, imageType) } i.bigOffscreenBuffer.drawTriangles(srcs, vertices, indices, blend, dstRegion, srcRegions, shader, uniforms, evenOdd, canSkipMipmap, false) return } i.flushBufferIfNeeded() var srcMipmaps [graphics.ShaderImageCount]*mipmap.Mipmap for i, src := range srcs { if src == nil { continue } src.flushBufferIfNeeded() srcMipmaps[i] = src.mipmap } i.mipmap.DrawTriangles(srcMipmaps, vertices, indices, blend, dstRegion, srcRegions, shader.shader, uniforms, evenOdd, canSkipMipmap) } func (i *Image) WritePixels(pix []byte, region image.Rectangle) { if i.modifyCallback != nil { i.modifyCallback() } if region.Dx() == 1 && region.Dy() == 1 { // Flush the other buffer to make the buffers exclusive. i.flushBigOffscreenBufferIfNeeded() if i.dotsBuffer == nil { i.dotsBuffer = map[image.Point][4]byte{} } var clr [4]byte copy(clr[:], pix) i.dotsBuffer[region.Min] = clr // One square requires 6 indices (= 2 triangles). if len(i.dotsBuffer) >= graphics.MaxVerticesCount/6 { i.flushDotsBufferIfNeeded() } return } i.flushBufferIfNeeded() i.mipmap.WritePixels(pix, region) } func (i *Image) ReadPixels(pixels []byte, region image.Rectangle) { // Check the error existence and avoid unnecessary calls. if theGlobalState.error() != nil { return } i.flushBigOffscreenBufferIfNeeded() if region.Dx() == 1 && region.Dy() == 1 { if c, ok := i.dotsBuffer[region.Min]; ok { copy(pixels, c[:]) return } // Do not call flushDotsBufferIfNeeded here. This would slow (image/draw).Draw. // See ebiten.TestImageDrawOver. } else { i.flushDotsBufferIfNeeded() } if err := theUI.readPixels(i.mipmap, pixels, region); err != nil { if panicOnErrorOnReadingPixels { panic(err) } theGlobalState.setError(err) } } func (i *Image) DumpScreenshot(name string, blackbg bool) (string, error) { i.flushBufferIfNeeded() return theUI.dumpScreenshot(i.mipmap, name, blackbg) } func (i *Image) flushBufferIfNeeded() { // The buffers are exclusive and the order should not matter. i.flushDotsBufferIfNeeded() i.flushBigOffscreenBufferIfNeeded() } func (i *Image) flushDotsBufferIfNeeded() { if len(i.dotsBuffer) == 0 { return } l := len(i.dotsBuffer) vs := make([]float32, l*4*graphics.VertexFloatCount) is := make([]uint16, l*6) sx, sy := float32(1), float32(1) var idx int for p, c := range i.dotsBuffer { dx := float32(p.X) dy := float32(p.Y) crf := float32(c[0]) / 0xff cgf := float32(c[1]) / 0xff cbf := float32(c[2]) / 0xff caf := float32(c[3]) / 0xff vs[graphics.VertexFloatCount*4*idx] = dx vs[graphics.VertexFloatCount*4*idx+1] = dy vs[graphics.VertexFloatCount*4*idx+2] = sx vs[graphics.VertexFloatCount*4*idx+3] = sy vs[graphics.VertexFloatCount*4*idx+4] = crf vs[graphics.VertexFloatCount*4*idx+5] = cgf vs[graphics.VertexFloatCount*4*idx+6] = cbf vs[graphics.VertexFloatCount*4*idx+7] = caf vs[graphics.VertexFloatCount*4*idx+8] = dx + 1 vs[graphics.VertexFloatCount*4*idx+9] = dy vs[graphics.VertexFloatCount*4*idx+10] = sx + 1 vs[graphics.VertexFloatCount*4*idx+11] = sy vs[graphics.VertexFloatCount*4*idx+12] = crf vs[graphics.VertexFloatCount*4*idx+13] = cgf vs[graphics.VertexFloatCount*4*idx+14] = cbf vs[graphics.VertexFloatCount*4*idx+15] = caf vs[graphics.VertexFloatCount*4*idx+16] = dx vs[graphics.VertexFloatCount*4*idx+17] = dy + 1 vs[graphics.VertexFloatCount*4*idx+18] = sx vs[graphics.VertexFloatCount*4*idx+19] = sy + 1 vs[graphics.VertexFloatCount*4*idx+20] = crf vs[graphics.VertexFloatCount*4*idx+21] = cgf vs[graphics.VertexFloatCount*4*idx+22] = cbf vs[graphics.VertexFloatCount*4*idx+23] = caf vs[graphics.VertexFloatCount*4*idx+24] = dx + 1 vs[graphics.VertexFloatCount*4*idx+25] = dy + 1 vs[graphics.VertexFloatCount*4*idx+26] = sx + 1 vs[graphics.VertexFloatCount*4*idx+27] = sy + 1 vs[graphics.VertexFloatCount*4*idx+28] = crf vs[graphics.VertexFloatCount*4*idx+29] = cgf vs[graphics.VertexFloatCount*4*idx+30] = cbf vs[graphics.VertexFloatCount*4*idx+31] = caf is[6*idx] = uint16(4 * idx) is[6*idx+1] = uint16(4*idx + 1) is[6*idx+2] = uint16(4*idx + 2) is[6*idx+3] = uint16(4*idx + 1) is[6*idx+4] = uint16(4*idx + 2) is[6*idx+5] = uint16(4*idx + 3) idx++ } i.dotsBuffer = nil srcs := [graphics.ShaderImageCount]*mipmap.Mipmap{whiteImage.mipmap} dr := image.Rect(0, 0, i.width, i.height) i.mipmap.DrawTriangles(srcs, vs, is, graphicsdriver.BlendCopy, dr, [graphics.ShaderImageCount]image.Rectangle{}, NearestFilterShader.shader, nil, false, true) } func (i *Image) flushBigOffscreenBufferIfNeeded() { if i.bigOffscreenBuffer != nil { i.bigOffscreenBuffer.flush() } } func DumpImages(dir string) (string, error) { return theUI.dumpImages(dir) } var ( whiteImage = NewImage(3, 3, atlas.ImageTypeRegular) ) func init() { pix := make([]byte, 4*whiteImage.width*whiteImage.height) for i := range pix { pix[i] = 0xff } // As whiteImage is used at Fill, use WritePixels instead. whiteImage.WritePixels(pix, image.Rect(0, 0, whiteImage.width, whiteImage.height)) } func (i *Image) clear() { i.Fill(0, 0, 0, 0, image.Rect(0, 0, i.width, i.height)) } func (i *Image) Fill(r, g, b, a float32, region image.Rectangle) { if len(i.tmpVerticesForFill) < 4*graphics.VertexFloatCount { i.tmpVerticesForFill = make([]float32, 4*graphics.VertexFloatCount) } // i.tmpVerticesForFill can be reused as this is sent to DrawTriangles immediately. graphics.QuadVertices( i.tmpVerticesForFill, 1, 1, float32(whiteImage.width-1), float32(whiteImage.height-1), float32(i.width), 0, 0, float32(i.height), 0, 0, r, g, b, a) is := graphics.QuadIndices() srcs := [graphics.ShaderImageCount]*Image{whiteImage} i.DrawTriangles(srcs, i.tmpVerticesForFill, is, graphicsdriver.BlendCopy, region, [graphics.ShaderImageCount]image.Rectangle{}, NearestFilterShader, nil, false, true, false) } type bigOffscreenImage struct { orig *Image imageType atlas.ImageType image *Image region image.Rectangle blend graphicsdriver.Blend dirty bool tmpVerticesForFlushing []float32 tmpVerticesForCopying []float32 } func newBigOffscreenImage(orig *Image, imageType atlas.ImageType) *bigOffscreenImage { return &bigOffscreenImage{ orig: orig, imageType: imageType, } } func (i *bigOffscreenImage) markDisposed() { if i.image != nil { i.image.MarkDisposed() i.image = nil } i.dirty = false } func (i *bigOffscreenImage) drawTriangles(srcs [graphics.ShaderImageCount]*Image, vertices []float32, indices []uint16, blend graphicsdriver.Blend, dstRegion image.Rectangle, srcRegions [graphics.ShaderImageCount]image.Rectangle, shader *Shader, uniforms []uint32, evenOdd bool, canSkipMipmap bool, antialias bool) { if i.blend != blend { i.flush() } i.blend = blend // If the new region doesn't match with the current region, remove the buffer image and recreate it later. if r := i.requiredRegion(vertices); i.region != r { i.flush() i.image = nil i.region = r } if i.region.Empty() { return } if i.image == nil { i.image = NewImage(i.region.Dx()*bigOffscreenScale, i.region.Dy()*bigOffscreenScale, i.imageType) } // Copy the current rendering result to get the correct blending result. if blend != graphicsdriver.BlendSourceOver && !i.dirty { srcs := [graphics.ShaderImageCount]*Image{i.orig} if len(i.tmpVerticesForCopying) < 4*graphics.VertexFloatCount { i.tmpVerticesForCopying = make([]float32, 4*graphics.VertexFloatCount) } // i.tmpVerticesForCopying can be resused as this is sent to DrawTriangles immediately. graphics.QuadVertices( i.tmpVerticesForCopying, float32(i.region.Min.X), float32(i.region.Min.Y), float32(i.region.Max.X), float32(i.region.Max.Y), bigOffscreenScale, 0, 0, bigOffscreenScale, 0, 0, 1, 1, 1, 1) is := graphics.QuadIndices() dstRegion := image.Rect(0, 0, i.region.Dx()*bigOffscreenScale, i.region.Dy()*bigOffscreenScale) i.image.DrawTriangles(srcs, i.tmpVerticesForCopying, is, graphicsdriver.BlendCopy, dstRegion, [graphics.ShaderImageCount]image.Rectangle{}, NearestFilterShader, nil, false, true, false) } for idx := 0; idx < len(vertices); idx += graphics.VertexFloatCount { vertices[idx] = (vertices[idx] - float32(i.region.Min.X)) * bigOffscreenScale vertices[idx+1] = (vertices[idx+1] - float32(i.region.Min.Y)) * bigOffscreenScale } // Translate to i.region coordinate space, and clamp against region size. dstRegion = dstRegion.Sub(i.region.Min) dstRegion = dstRegion.Intersect(image.Rect(0, 0, i.region.Dx(), i.region.Dy())) dstRegion.Min.X *= bigOffscreenScale dstRegion.Min.Y *= bigOffscreenScale dstRegion.Max.X *= bigOffscreenScale dstRegion.Max.Y *= bigOffscreenScale i.image.DrawTriangles(srcs, vertices, indices, blend, dstRegion, srcRegions, shader, uniforms, evenOdd, canSkipMipmap, false) i.dirty = true } func (i *bigOffscreenImage) flush() { if i.image == nil { return } if !i.dirty { return } // Mark the offscreen clearn earlier to avoid recursive calls. i.dirty = false srcs := [graphics.ShaderImageCount]*Image{i.image} if len(i.tmpVerticesForFlushing) < 4*graphics.VertexFloatCount { i.tmpVerticesForFlushing = make([]float32, 4*graphics.VertexFloatCount) } // i.tmpVerticesForFlushing can be reused as this is sent to DrawTriangles in this function. graphics.QuadVertices( i.tmpVerticesForFlushing, 0, 0, float32(i.region.Dx()*bigOffscreenScale), float32(i.region.Dy()*bigOffscreenScale), 1.0/bigOffscreenScale, 0, 0, 1.0/bigOffscreenScale, float32(i.region.Min.X), float32(i.region.Min.Y), 1, 1, 1, 1) is := graphics.QuadIndices() dstRegion := i.region blend := graphicsdriver.BlendSourceOver if i.blend != graphicsdriver.BlendSourceOver { blend = graphicsdriver.BlendCopy } i.orig.DrawTriangles(srcs, i.tmpVerticesForFlushing, is, blend, dstRegion, [graphics.ShaderImageCount]image.Rectangle{}, LinearFilterShader, nil, false, true, false) i.image.clear() i.dirty = false } func (i *bigOffscreenImage) requiredRegion(vertices []float32) image.Rectangle { minX := float32(i.orig.width) minY := float32(i.orig.height) maxX := float32(0) maxY := float32(0) for i := 0; i < len(vertices); i += graphics.VertexFloatCount { dstX := vertices[i] dstY := vertices[i+1] if minX > floor(dstX)-1 { minX = floor(dstX) - 1 } if minY > floor(dstY)-1 { minY = floor(dstY) - 1 } if maxX < ceil(dstX)+1 { maxX = ceil(dstX) + 1 } if maxY < ceil(dstY)+1 { maxY = ceil(dstY) + 1 } } // Adjust the granularity of the rectangle. r := image.Rect( roundDown16(int(minX)), roundDown16(int(minY)), roundUp16(int(maxX)), roundUp16(int(maxY))) r = r.Intersect(image.Rect(0, 0, i.orig.width, i.orig.height)) // TODO: Is this check required? if r.Dx() < 0 || r.Dy() < 0 { return i.region } return r.Union(i.region) } func floor(x float32) float32 { return float32(math.Floor(float64(x))) } func ceil(x float32) float32 { return float32(math.Ceil(float64(x))) } func roundDown16(x int) int { return x & ^(0xf) } func roundUp16(x int) int { return ((x - 1) & ^(0xf)) + 0x10 }