// Copyright 2018 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package metal import ( "fmt" "math" "sort" "strings" "unsafe" "github.com/hajimehoshi/ebiten/v2/internal/cocoa" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver/metal/ca" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver/metal/mtl" "github.com/hajimehoshi/ebiten/v2/internal/shaderir" ) const source = `#include #define FILTER_NEAREST {{.FilterNearest}} #define FILTER_LINEAR {{.FilterLinear}} #define FILTER_SCREEN {{.FilterScreen}} #define ADDRESS_CLAMP_TO_ZERO {{.AddressClampToZero}} #define ADDRESS_REPEAT {{.AddressRepeat}} #define ADDRESS_UNSAFE {{.AddressUnsafe}} using namespace metal; struct VertexIn { float2 position; float2 tex; float4 color; }; struct VertexOut { float4 position [[position]]; float2 tex; float4 color; }; vertex VertexOut VertexShader( uint vid [[vertex_id]], const device VertexIn* vertices [[buffer(0)]], constant float2& viewport_size [[buffer(1)]] ) { // In Metal, the NDC's Y direction (upward) and the framebuffer's Y direction (downward) don't // match. Then, the Y direction must be inverted. float4x4 projectionMatrix = float4x4( float4(2.0 / viewport_size.x, 0, 0, 0), float4(0, -2.0 / viewport_size.y, 0, 0), float4(0, 0, 1, 0), float4(-1, 1, 0, 1) ); VertexIn in = vertices[vid]; VertexOut out = { .position = projectionMatrix * float4(in.position, 0, 1), .tex = in.tex, // Fragment shader wants premultiplied alpha. .color = float4(in.color.rgb, 1) * in.color.a, }; return out; } float EuclideanMod(float x, float y) { // Assume that y is always positive. return x - y * floor(x/y); } template float2 AdjustTexelByAddress(float2 p, float4 source_region); template<> inline float2 AdjustTexelByAddress(float2 p, float4 source_region) { return p; } template<> inline float2 AdjustTexelByAddress(float2 p, float4 source_region) { float2 o = float2(source_region[0], source_region[1]); float2 size = float2(source_region[2] - source_region[0], source_region[3] - source_region[1]); return float2(EuclideanMod((p.x - o.x), size.x) + o.x, EuclideanMod((p.y - o.y), size.y) + o.y); } template struct ColorFromTexel; constexpr sampler texture_sampler{filter::nearest}; template<> struct ColorFromTexel { inline float4 Do(VertexOut v, texture2d texture, constant float2& source_size, constant float4& source_region, float scale) { float2 p = v.tex; return texture.sample(texture_sampler, p); } }; template struct ColorFromTexel { inline float4 Do(VertexOut v, texture2d texture, constant float2& source_size, constant float4& source_region, float scale) { float2 p = AdjustTexelByAddress
(v.tex, source_region); if (source_region[0] <= p.x && source_region[1] <= p.y && p.x < source_region[2] && p.y < source_region[3]) { return texture.sample(texture_sampler, p); } return 0.0; } }; template<> struct ColorFromTexel { inline float4 Do(VertexOut v, texture2d texture, constant float2& source_size, constant float4& source_region, float scale) { const float2 texel_size = 1 / source_size; // Shift 1/512 [texel] to avoid the tie-breaking issue. // As all the vertex positions are aligned to 1/16 [pixel], this shiting should work in most cases. float2 p0 = v.tex - texel_size / 2.0 + (texel_size / 512.0); float2 p1 = v.tex + texel_size / 2.0 + (texel_size / 512.0); float4 c0 = texture.sample(texture_sampler, p0); float4 c1 = texture.sample(texture_sampler, float2(p1.x, p0.y)); float4 c2 = texture.sample(texture_sampler, float2(p0.x, p1.y)); float4 c3 = texture.sample(texture_sampler, p1); float2 rate = fract(p0 * source_size); return mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y); } }; template struct ColorFromTexel { inline float4 Do(VertexOut v, texture2d texture, constant float2& source_size, constant float4& source_region, float scale) { const float2 texel_size = 1 / source_size; // Shift 1/512 [texel] to avoid the tie-breaking issue. // As all the vertex positions are aligned to 1/16 [pixel], this shiting should work in most cases. float2 p0 = v.tex - texel_size / 2.0 + (texel_size / 512.0); float2 p1 = v.tex + texel_size / 2.0 + (texel_size / 512.0); p0 = AdjustTexelByAddress
(p0, source_region); p1 = AdjustTexelByAddress
(p1, source_region); float4 c0 = texture.sample(texture_sampler, p0); float4 c1 = texture.sample(texture_sampler, float2(p1.x, p0.y)); float4 c2 = texture.sample(texture_sampler, float2(p0.x, p1.y)); float4 c3 = texture.sample(texture_sampler, p1); if (p0.x < source_region[0]) { c0 = 0; c2 = 0; } if (p0.y < source_region[1]) { c0 = 0; c1 = 0; } if (source_region[2] <= p1.x) { c1 = 0; c3 = 0; } if (source_region[3] <= p1.y) { c2 = 0; c3 = 0; } float2 rate = fract(p0 * source_size); return mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y); } }; template struct ColorFromTexel { inline float4 Do(VertexOut v, texture2d texture, constant float2& source_size, constant float4& source_region, float scale) { const float2 texel_size = 1 / source_size; float2 p0 = v.tex - texel_size / 2.0 / scale + (texel_size / 512.0); float2 p1 = v.tex + texel_size / 2.0 / scale + (texel_size / 512.0); float4 c0 = texture.sample(texture_sampler, p0); float4 c1 = texture.sample(texture_sampler, float2(p1.x, p0.y)); float4 c2 = texture.sample(texture_sampler, float2(p0.x, p1.y)); float4 c3 = texture.sample(texture_sampler, p1); float2 rate_center = float2(1.0, 1.0) - texel_size / 2.0 / scale; float2 rate = clamp(((fract(p0 * source_size) - rate_center) * scale) + rate_center, 0.0, 1.0); return mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y); } }; template struct FragmentShaderImpl { inline float4 Do( VertexOut v, texture2d texture, constant float2& source_size, constant float4x4& color_matrix_body, constant float4& color_matrix_translation, constant float4& source_region, constant float& scale) { float4 c = ColorFromTexel().Do(v, texture, source_size, source_region, scale); if (useColorM) { c.rgb /= c.a + (1.0 - sign(c.a)); c = (color_matrix_body * c) + color_matrix_translation; c.rgb *= c.a; c *= v.color; c.rgb = min(c.rgb, c.a); } else { c *= v.color; } return c; } }; template struct FragmentShaderImpl { inline float4 Do( VertexOut v, texture2d texture, constant float2& source_size, constant float4x4& color_matrix_body, constant float4& color_matrix_translation, constant float4& source_region, constant float& scale) { return ColorFromTexel().Do(v, texture, source_size, source_region, scale); } }; // Define Foo and FooCp macros to force macro replacement. // See "6.10.3.1 Argument substitution" in ISO/IEC 9899. #define FragmentShaderFunc(useColorM, filter, address) \ FragmentShaderFuncCp(useColorM, filter, address) #define FragmentShaderFuncCp(useColorM, filter, address) \ fragment float4 FragmentShader_##useColorM##_##filter##_##address( \ VertexOut v [[stage_in]], \ texture2d texture [[texture(0)]], \ constant float2& source_size [[buffer(2)]], \ constant float4x4& color_matrix_body [[buffer(3)]], \ constant float4& color_matrix_translation [[buffer(4)]], \ constant float4& source_region [[buffer(5)]], \ constant float& scale [[buffer(6)]]) { \ return FragmentShaderImpl().Do( \ v, texture, source_size, color_matrix_body, color_matrix_translation, source_region, scale); \ } FragmentShaderFunc(0, FILTER_NEAREST, ADDRESS_CLAMP_TO_ZERO) FragmentShaderFunc(0, FILTER_LINEAR, ADDRESS_CLAMP_TO_ZERO) FragmentShaderFunc(0, FILTER_NEAREST, ADDRESS_REPEAT) FragmentShaderFunc(0, FILTER_LINEAR, ADDRESS_REPEAT) FragmentShaderFunc(0, FILTER_NEAREST, ADDRESS_UNSAFE) FragmentShaderFunc(0, FILTER_LINEAR, ADDRESS_UNSAFE) FragmentShaderFunc(1, FILTER_NEAREST, ADDRESS_CLAMP_TO_ZERO) FragmentShaderFunc(1, FILTER_LINEAR, ADDRESS_CLAMP_TO_ZERO) FragmentShaderFunc(1, FILTER_NEAREST, ADDRESS_REPEAT) FragmentShaderFunc(1, FILTER_LINEAR, ADDRESS_REPEAT) FragmentShaderFunc(1, FILTER_NEAREST, ADDRESS_UNSAFE) FragmentShaderFunc(1, FILTER_LINEAR, ADDRESS_UNSAFE) FragmentShaderFunc(0, FILTER_SCREEN, ADDRESS_UNSAFE) #undef FragmentShaderFuncName ` type rpsKey struct { useColorM bool filter graphicsdriver.Filter address graphicsdriver.Address compositeMode graphicsdriver.CompositeMode stencilMode stencilMode screen bool } type Graphics struct { view view screenRPS mtl.RenderPipelineState rpss map[rpsKey]mtl.RenderPipelineState cq mtl.CommandQueue cb mtl.CommandBuffer rce mtl.RenderCommandEncoder dsss map[stencilMode]mtl.DepthStencilState screenDrawable ca.MetalDrawable buffers map[mtl.CommandBuffer][]mtl.Buffer unusedBuffers map[mtl.Buffer]struct{} lastDst *Image lastStencilMode stencilMode vb mtl.Buffer ib mtl.Buffer images map[graphicsdriver.ImageID]*Image nextImageID graphicsdriver.ImageID shaders map[graphicsdriver.ShaderID]*Shader nextShaderID graphicsdriver.ShaderID transparent bool maxImageSize int tmpTextures []mtl.Texture pool cocoa.NSAutoreleasePool } type stencilMode int const ( prepareStencil stencilMode = iota drawWithStencil noStencil ) var creatingSystemDefaultDeviceSucceeded bool func init() { // mtl.CreateSystemDefaultDevice must be called on the main thread (#2147). _, ok := mtl.CreateSystemDefaultDevice() creatingSystemDefaultDeviceSucceeded = ok } // NewGraphics creates an implementation of graphicsdriver.Graphics for Metal. // The returned graphics value is nil iff the error is not nil. func NewGraphics() (graphicsdriver.Graphics, error) { // On old mac devices like iMac 2011, Metal is not supported (#779). // TODO: Is there a better way to check whether Metal is available or not? // It seems OK to call MTLCreateSystemDefaultDevice multiple times, so this should be fine. if !creatingSystemDefaultDeviceSucceeded { return nil, fmt.Errorf("metal: mtl.CreateSystemDefaultDevice failed") } return &Graphics{}, nil } func (g *Graphics) Begin() error { // NSAutoreleasePool is required to release drawable correctly (#847). // https://developer.apple.com/library/archive/documentation/3DDrawing/Conceptual/MTLBestPracticesGuide/Drawables.html g.pool = cocoa.NSAutoreleasePool_new() return nil } func (g *Graphics) End(present bool) error { g.flushIfNeeded(present) g.screenDrawable = ca.MetalDrawable{} g.pool.Release() g.pool.ID = 0 return nil } func (g *Graphics) SetWindow(window uintptr) { // Note that [NSApp mainWindow] returns nil when the window is borderless. // Then the window is needed to be given explicitly. g.view.setWindow(window) } func (g *Graphics) SetUIView(uiview uintptr) { // TODO: Should this be called on the main thread? g.view.setUIView(uiview) } func pow2(x uintptr) uintptr { var p2 uintptr = 1 for p2 < x { p2 *= 2 } return p2 } func (g *Graphics) gcBuffers() { for cb, bs := range g.buffers { // If the command buffer still lives, the buffer must not be updated. // TODO: Handle an error? if cb.Status() != mtl.CommandBufferStatusCompleted { continue } for _, b := range bs { if g.unusedBuffers == nil { g.unusedBuffers = map[mtl.Buffer]struct{}{} } g.unusedBuffers[b] = struct{}{} } delete(g.buffers, cb) cb.Release() } const maxUnusedBuffers = 10 if len(g.unusedBuffers) > maxUnusedBuffers { bufs := make([]mtl.Buffer, 0, len(g.unusedBuffers)) for b := range g.unusedBuffers { bufs = append(bufs, b) } sort.Slice(bufs, func(a, b int) bool { return bufs[a].Length() > bufs[b].Length() }) for _, b := range bufs[maxUnusedBuffers:] { delete(g.unusedBuffers, b) b.Release() } } } func (g *Graphics) availableBuffer(length uintptr) mtl.Buffer { if g.cb == (mtl.CommandBuffer{}) { g.cb = g.cq.MakeCommandBuffer() } var newBuf mtl.Buffer for b := range g.unusedBuffers { if b.Length() >= length { newBuf = b delete(g.unusedBuffers, b) break } } if newBuf == (mtl.Buffer{}) { newBuf = g.view.getMTLDevice().MakeBufferWithLength(pow2(length), resourceStorageMode) } if g.buffers == nil { g.buffers = map[mtl.CommandBuffer][]mtl.Buffer{} } if _, ok := g.buffers[g.cb]; !ok { g.cb.Retain() } g.buffers[g.cb] = append(g.buffers[g.cb], newBuf) return newBuf } func (g *Graphics) SetVertices(vertices []float32, indices []uint16) error { vbSize := unsafe.Sizeof(vertices[0]) * uintptr(len(vertices)) ibSize := unsafe.Sizeof(indices[0]) * uintptr(len(indices)) g.vb = g.availableBuffer(vbSize) g.vb.CopyToContents(unsafe.Pointer(&vertices[0]), vbSize) g.ib = g.availableBuffer(ibSize) g.ib.CopyToContents(unsafe.Pointer(&indices[0]), ibSize) return nil } func (g *Graphics) flushIfNeeded(present bool) { if g.cb == (mtl.CommandBuffer{}) { return } g.flushRenderCommandEncoderIfNeeded() if !g.view.presentsWithTransaction() && present && g.screenDrawable != (ca.MetalDrawable{}) { g.cb.PresentDrawable(g.screenDrawable) } g.cb.Commit() if g.view.presentsWithTransaction() && present && g.screenDrawable != (ca.MetalDrawable{}) { g.cb.WaitUntilScheduled() g.screenDrawable.Present() } for _, t := range g.tmpTextures { t.Release() } g.tmpTextures = g.tmpTextures[:0] g.cb = mtl.CommandBuffer{} } func (g *Graphics) checkSize(width, height int) { if width < 1 { panic(fmt.Sprintf("metal: width (%d) must be equal or more than %d", width, 1)) } if height < 1 { panic(fmt.Sprintf("metal: height (%d) must be equal or more than %d", height, 1)) } m := g.MaxImageSize() if width > m { panic(fmt.Sprintf("metal: width (%d) must be less than or equal to %d", width, m)) } if height > m { panic(fmt.Sprintf("metal: height (%d) must be less than or equal to %d", height, m)) } } func (g *Graphics) genNextImageID() graphicsdriver.ImageID { g.nextImageID++ return g.nextImageID } func (g *Graphics) genNextShaderID() graphicsdriver.ShaderID { g.nextShaderID++ return g.nextShaderID } func (g *Graphics) NewImage(width, height int) (graphicsdriver.Image, error) { g.checkSize(width, height) td := mtl.TextureDescriptor{ TextureType: mtl.TextureType2D, PixelFormat: mtl.PixelFormatRGBA8UNorm, Width: graphics.InternalImageSize(width), Height: graphics.InternalImageSize(height), StorageMode: storageMode, Usage: mtl.TextureUsageShaderRead | mtl.TextureUsageRenderTarget, } t := g.view.getMTLDevice().MakeTexture(td) i := &Image{ id: g.genNextImageID(), graphics: g, width: width, height: height, texture: t, } g.addImage(i) return i, nil } func (g *Graphics) NewScreenFramebufferImage(width, height int) (graphicsdriver.Image, error) { g.view.setDrawableSize(width, height) i := &Image{ id: g.genNextImageID(), graphics: g, width: width, height: height, screen: true, } g.addImage(i) return i, nil } func (g *Graphics) addImage(img *Image) { if g.images == nil { g.images = map[graphicsdriver.ImageID]*Image{} } if _, ok := g.images[img.id]; ok { panic(fmt.Sprintf("metal: image ID %d was already registered", img.id)) } g.images[img.id] = img } func (g *Graphics) removeImage(img *Image) { delete(g.images, img.id) } func (g *Graphics) SetTransparent(transparent bool) { g.transparent = transparent } func operationToBlendFactor(c graphicsdriver.Operation) mtl.BlendFactor { switch c { case graphicsdriver.Zero: return mtl.BlendFactorZero case graphicsdriver.One: return mtl.BlendFactorOne case graphicsdriver.SrcAlpha: return mtl.BlendFactorSourceAlpha case graphicsdriver.DstAlpha: return mtl.BlendFactorDestinationAlpha case graphicsdriver.OneMinusSrcAlpha: return mtl.BlendFactorOneMinusSourceAlpha case graphicsdriver.OneMinusDstAlpha: return mtl.BlendFactorOneMinusDestinationAlpha case graphicsdriver.DstColor: return mtl.BlendFactorDestinationColor default: panic(fmt.Sprintf("metal: invalid operation: %d", c)) } } func (g *Graphics) Initialize() error { // Creating *State objects are expensive and reuse them whenever possible. // See https://developer.apple.com/library/archive/documentation/Miscellaneous/Conceptual/MetalProgrammingGuide/Cmd-Submiss/Cmd-Submiss.html // TODO: Release existing rpss if g.rpss == nil { g.rpss = map[rpsKey]mtl.RenderPipelineState{} } for _, dss := range g.dsss { dss.Release() } if g.dsss == nil { g.dsss = map[stencilMode]mtl.DepthStencilState{} } if err := g.view.initialize(); err != nil { return err } if g.transparent { g.view.ml.SetOpaque(false) } replaces := map[string]string{ "{{.FilterNearest}}": fmt.Sprintf("%d", graphicsdriver.FilterNearest), "{{.FilterLinear}}": fmt.Sprintf("%d", graphicsdriver.FilterLinear), "{{.FilterScreen}}": fmt.Sprintf("%d", graphicsdriver.FilterScreen), "{{.AddressClampToZero}}": fmt.Sprintf("%d", graphicsdriver.AddressClampToZero), "{{.AddressRepeat}}": fmt.Sprintf("%d", graphicsdriver.AddressRepeat), "{{.AddressUnsafe}}": fmt.Sprintf("%d", graphicsdriver.AddressUnsafe), } src := source for k, v := range replaces { src = strings.Replace(src, k, v, -1) } lib, err := g.view.getMTLDevice().MakeLibrary(src, mtl.CompileOptions{}) if err != nil { return err } vs, err := lib.MakeFunction("VertexShader") if err != nil { return err } fs, err := lib.MakeFunction( fmt.Sprintf("FragmentShader_%d_%d_%d", 0, graphicsdriver.FilterScreen, graphicsdriver.AddressUnsafe)) if err != nil { return err } rpld := mtl.RenderPipelineDescriptor{ VertexFunction: vs, FragmentFunction: fs, } rpld.ColorAttachments[0].PixelFormat = g.view.colorPixelFormat() rpld.ColorAttachments[0].BlendingEnabled = true rpld.ColorAttachments[0].DestinationAlphaBlendFactor = mtl.BlendFactorZero rpld.ColorAttachments[0].DestinationRGBBlendFactor = mtl.BlendFactorZero rpld.ColorAttachments[0].SourceAlphaBlendFactor = mtl.BlendFactorOne rpld.ColorAttachments[0].SourceRGBBlendFactor = mtl.BlendFactorOne rpld.ColorAttachments[0].WriteMask = mtl.ColorWriteMaskAll rps, err := g.view.getMTLDevice().MakeRenderPipelineState(rpld) if err != nil { return err } g.screenRPS = rps for _, screen := range []bool{false, true} { for _, cm := range []bool{false, true} { for _, a := range []graphicsdriver.Address{ graphicsdriver.AddressClampToZero, graphicsdriver.AddressRepeat, graphicsdriver.AddressUnsafe, } { for _, f := range []graphicsdriver.Filter{ graphicsdriver.FilterNearest, graphicsdriver.FilterLinear, } { for c := graphicsdriver.CompositeModeSourceOver; c <= graphicsdriver.CompositeModeMax; c++ { for _, stencil := range []stencilMode{ prepareStencil, drawWithStencil, noStencil, } { cmi := 0 if cm { cmi = 1 } fs, err := lib.MakeFunction(fmt.Sprintf("FragmentShader_%d_%d_%d", cmi, f, a)) if err != nil { return err } rpld := mtl.RenderPipelineDescriptor{ VertexFunction: vs, FragmentFunction: fs, } if stencil != noStencil { rpld.StencilAttachmentPixelFormat = mtl.PixelFormatStencil8 } pix := mtl.PixelFormatRGBA8UNorm if screen { pix = g.view.colorPixelFormat() } rpld.ColorAttachments[0].PixelFormat = pix rpld.ColorAttachments[0].BlendingEnabled = true src, dst := c.Operations() rpld.ColorAttachments[0].DestinationAlphaBlendFactor = operationToBlendFactor(dst) rpld.ColorAttachments[0].DestinationRGBBlendFactor = operationToBlendFactor(dst) rpld.ColorAttachments[0].SourceAlphaBlendFactor = operationToBlendFactor(src) rpld.ColorAttachments[0].SourceRGBBlendFactor = operationToBlendFactor(src) if stencil == prepareStencil { rpld.ColorAttachments[0].WriteMask = mtl.ColorWriteMaskNone } else { rpld.ColorAttachments[0].WriteMask = mtl.ColorWriteMaskAll } rps, err := g.view.getMTLDevice().MakeRenderPipelineState(rpld) if err != nil { return err } g.rpss[rpsKey{ screen: screen, useColorM: cm, filter: f, address: a, compositeMode: c, stencilMode: stencil, }] = rps } } } } } } // The stencil reference value is always 0 (default). g.dsss[prepareStencil] = g.view.getMTLDevice().MakeDepthStencilState(mtl.DepthStencilDescriptor{ BackFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationInvert, StencilCompareFunction: mtl.CompareFunctionAlways, }, FrontFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationInvert, StencilCompareFunction: mtl.CompareFunctionAlways, }, }) g.dsss[drawWithStencil] = g.view.getMTLDevice().MakeDepthStencilState(mtl.DepthStencilDescriptor{ BackFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationKeep, StencilCompareFunction: mtl.CompareFunctionNotEqual, }, FrontFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationKeep, StencilCompareFunction: mtl.CompareFunctionNotEqual, }, }) g.dsss[noStencil] = g.view.getMTLDevice().MakeDepthStencilState(mtl.DepthStencilDescriptor{ BackFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationKeep, StencilCompareFunction: mtl.CompareFunctionAlways, }, FrontFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationKeep, StencilCompareFunction: mtl.CompareFunctionAlways, }, }) g.cq = g.view.getMTLDevice().MakeCommandQueue() return nil } func (g *Graphics) flushRenderCommandEncoderIfNeeded() { if g.rce == (mtl.RenderCommandEncoder{}) { return } g.rce.EndEncoding() g.rce = mtl.RenderCommandEncoder{} g.lastDst = nil } func (g *Graphics) draw(rps mtl.RenderPipelineState, dst *Image, dstRegion graphicsdriver.Region, srcs [graphics.ShaderImageCount]*Image, indexLen int, indexOffset int, uniforms [][]float32, stencilMode stencilMode) error { // When prepareing a stencil buffer, flush the current render command encoder // to make sure the stencil buffer is cleared when loading. // TODO: What about clearing the stencil buffer by vertices? if g.lastDst != dst || (g.lastStencilMode == noStencil) != (stencilMode == noStencil) || stencilMode == prepareStencil { g.flushRenderCommandEncoderIfNeeded() } g.lastDst = dst g.lastStencilMode = stencilMode if g.rce == (mtl.RenderCommandEncoder{}) { rpd := mtl.RenderPassDescriptor{} // Even though the destination pixels are not used, mtl.LoadActionDontCare might cause glitches // (#1019). Always using mtl.LoadActionLoad is safe. if dst.screen { rpd.ColorAttachments[0].LoadAction = mtl.LoadActionClear } else { rpd.ColorAttachments[0].LoadAction = mtl.LoadActionLoad } // The store action should always be 'store' even for the screen (#1700). rpd.ColorAttachments[0].StoreAction = mtl.StoreActionStore t := dst.mtlTexture() if t == (mtl.Texture{}) { return nil } rpd.ColorAttachments[0].Texture = t rpd.ColorAttachments[0].ClearColor = mtl.ClearColor{} if stencilMode == prepareStencil { dst.ensureStencil() rpd.StencilAttachment.LoadAction = mtl.LoadActionClear rpd.StencilAttachment.StoreAction = mtl.StoreActionDontCare rpd.StencilAttachment.Texture = dst.stencil } if g.cb == (mtl.CommandBuffer{}) { g.cb = g.cq.MakeCommandBuffer() } g.rce = g.cb.MakeRenderCommandEncoder(rpd) } g.rce.SetRenderPipelineState(rps) w, h := dst.internalSize() g.rce.SetViewport(mtl.Viewport{ OriginX: 0, OriginY: 0, Width: float64(w), Height: float64(h), ZNear: -1, ZFar: 1, }) g.rce.SetScissorRect(mtl.ScissorRect{ X: int(dstRegion.X), Y: int(dstRegion.Y), Width: int(dstRegion.Width), Height: int(dstRegion.Height), }) g.rce.SetVertexBuffer(g.vb, 0, 0) for i, u := range uniforms { g.rce.SetVertexBytes(unsafe.Pointer(&u[0]), unsafe.Sizeof(u[0])*uintptr(len(u)), i+1) g.rce.SetFragmentBytes(unsafe.Pointer(&u[0]), unsafe.Sizeof(u[0])*uintptr(len(u)), i+1) } for i, src := range srcs { if src != nil { g.rce.SetFragmentTexture(src.texture, i) } else { g.rce.SetFragmentTexture(mtl.Texture{}, i) } } g.rce.SetDepthStencilState(g.dsss[stencilMode]) g.rce.DrawIndexedPrimitives(mtl.PrimitiveTypeTriangle, indexLen, mtl.IndexTypeUInt16, g.ib, indexOffset*2) return nil } func (g *Graphics) DrawTriangles(dstID graphicsdriver.ImageID, srcIDs [graphics.ShaderImageCount]graphicsdriver.ImageID, offsets [graphics.ShaderImageCount - 1][2]float32, shaderID graphicsdriver.ShaderID, indexLen int, indexOffset int, mode graphicsdriver.CompositeMode, colorM graphicsdriver.ColorM, filter graphicsdriver.Filter, address graphicsdriver.Address, dstRegion, srcRegion graphicsdriver.Region, uniforms [][]float32, evenOdd bool) error { dst := g.images[dstID] if dst.screen { g.view.update() } var srcs [graphics.ShaderImageCount]*Image for i, srcID := range srcIDs { srcs[i] = g.images[srcID] } rpss := map[stencilMode]mtl.RenderPipelineState{} var uniformVars [][]float32 if shaderID == graphicsdriver.InvalidShaderID { if dst.screen && filter == graphicsdriver.FilterScreen { rpss[noStencil] = g.screenRPS } else { for _, stencil := range []stencilMode{ prepareStencil, drawWithStencil, noStencil, } { rpss[stencil] = g.rpss[rpsKey{ screen: dst.screen, useColorM: !colorM.IsIdentity(), filter: filter, address: address, compositeMode: mode, stencilMode: stencil, }] } } w, h := dst.internalSize() sourceSize := []float32{0, 0} if filter != graphicsdriver.FilterNearest { w, h := srcs[0].internalSize() sourceSize[0] = float32(w) sourceSize[1] = float32(h) } var esBody [16]float32 var esTranslate [4]float32 colorM.Elements(&esBody, &esTranslate) scale := float32(0) if filter == graphicsdriver.FilterScreen { scale = float32(dst.width) / float32(srcs[0].width) } uniformVars = [][]float32{ {float32(w), float32(h)}, sourceSize, esBody[:], esTranslate[:], { srcRegion.X, srcRegion.Y, srcRegion.X + srcRegion.Width, srcRegion.Y + srcRegion.Height, }, {scale}, } } else { for _, stencil := range []stencilMode{ prepareStencil, drawWithStencil, noStencil, } { var err error rpss[stencil], err = g.shaders[shaderID].RenderPipelineState(g.view.getMTLDevice(), mode, stencil) if err != nil { return err } } uniformVars = make([][]float32, graphics.PreservedUniformVariablesCount+len(uniforms)) // Set the destination texture size. dw, dh := dst.internalSize() uniformVars[graphics.TextureDestinationSizeUniformVariableIndex] = []float32{float32(dw), float32(dh)} // Set the source texture sizes. usizes := make([]float32, 2*len(srcs)) for i, src := range srcs { if src != nil { w, h := src.internalSize() usizes[2*i] = float32(w) usizes[2*i+1] = float32(h) } } uniformVars[graphics.TextureSourceSizesUniformVariableIndex] = usizes // Set the destination region's origin. udorigin := []float32{float32(dstRegion.X) / float32(dw), float32(dstRegion.Y) / float32(dh)} uniformVars[graphics.TextureDestinationRegionOriginUniformVariableIndex] = udorigin // Set the destination region's size. udsize := []float32{float32(dstRegion.Width) / float32(dw), float32(dstRegion.Height) / float32(dh)} uniformVars[graphics.TextureDestinationRegionSizeUniformVariableIndex] = udsize // Set the source offsets. uoffsets := make([]float32, 2*len(offsets)) for i, offset := range offsets { uoffsets[2*i] = offset[0] uoffsets[2*i+1] = offset[1] } uniformVars[graphics.TextureSourceOffsetsUniformVariableIndex] = uoffsets // Set the source region's origin of texture0. usorigin := []float32{float32(srcRegion.X), float32(srcRegion.Y)} uniformVars[graphics.TextureSourceRegionOriginUniformVariableIndex] = usorigin // Set the source region's size of texture0. ussize := []float32{float32(srcRegion.Width), float32(srcRegion.Height)} uniformVars[graphics.TextureSourceRegionSizeUniformVariableIndex] = ussize uniformVars[graphics.ProjectionMatrixUniformVariableIndex] = []float32{ 2 / float32(dw), 0, 0, 0, 0, -2 / float32(dh), 0, 0, 0, 0, 1, 0, -1, 1, 0, 1, } // Set the additional uniform variables. for i, v := range uniforms { const offset = graphics.PreservedUniformVariablesCount t := g.shaders[shaderID].ir.Uniforms[offset+i] switch t.Main { case shaderir.Mat3: // float3x3 requires 16-byte alignment (#2036). v1 := make([]float32, 12) copy(v1[0:3], v[0:3]) copy(v1[4:7], v[3:6]) copy(v1[8:11], v[6:9]) uniformVars[offset+i] = v1 case shaderir.Array: switch t.Sub[0].Main { case shaderir.Mat3: v1 := make([]float32, t.Length*12) for j := 0; j < t.Length; j++ { offset0 := j * 9 offset1 := j * 12 copy(v1[offset1:offset1+3], v[offset0:offset0+3]) copy(v1[offset1+4:offset1+7], v[offset0+3:offset0+6]) copy(v1[offset1+8:offset1+11], v[offset0+6:offset0+9]) } uniformVars[offset+i] = v1 default: uniformVars[offset+i] = v } default: uniformVars[offset+i] = v } } } if evenOdd { if err := g.draw(rpss[prepareStencil], dst, dstRegion, srcs, indexLen, indexOffset, uniformVars, prepareStencil); err != nil { return err } if err := g.draw(rpss[drawWithStencil], dst, dstRegion, srcs, indexLen, indexOffset, uniformVars, drawWithStencil); err != nil { return err } } else { if err := g.draw(rpss[noStencil], dst, dstRegion, srcs, indexLen, indexOffset, uniformVars, noStencil); err != nil { return err } } return nil } func (g *Graphics) SetVsyncEnabled(enabled bool) { g.view.setDisplaySyncEnabled(enabled) } func (g *Graphics) SetFullscreen(fullscreen bool) { g.view.setFullscreen(fullscreen) } func (g *Graphics) FramebufferYDirection() graphicsdriver.YDirection { return graphicsdriver.Downward } func (g *Graphics) NeedsRestoring() bool { return false } func (g *Graphics) NeedsClearingScreen() bool { return false } func (g *Graphics) IsGL() bool { return false } func (g *Graphics) IsDirectX() bool { return false } func (g *Graphics) MaxImageSize() int { if g.maxImageSize != 0 { return g.maxImageSize } g.maxImageSize = 4096 // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf switch { case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily5_v1): g.maxImageSize = 16384 case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily4_v1): g.maxImageSize = 16384 case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily3_v1): g.maxImageSize = 16384 case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily2_v2): g.maxImageSize = 8192 case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily2_v1): g.maxImageSize = 4096 case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily1_v2): g.maxImageSize = 8192 case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily1_v1): g.maxImageSize = 4096 case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_tvOS_GPUFamily2_v1): g.maxImageSize = 16384 case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_tvOS_GPUFamily1_v1): g.maxImageSize = 8192 case g.view.getMTLDevice().SupportsFeatureSet(mtl.FeatureSet_macOS_GPUFamily1_v1): g.maxImageSize = 16384 default: panic("metal: there is no supported feature set") } return g.maxImageSize } func (g *Graphics) NewShader(program *shaderir.Program) (graphicsdriver.Shader, error) { s, err := newShader(g.view.getMTLDevice(), g.genNextShaderID(), program) if err != nil { return nil, err } g.addShader(s) return s, nil } func (g *Graphics) addShader(shader *Shader) { if g.shaders == nil { g.shaders = map[graphicsdriver.ShaderID]*Shader{} } if _, ok := g.shaders[shader.id]; ok { panic(fmt.Sprintf("metal: shader ID %d was already registered", shader.id)) } g.shaders[shader.id] = shader } func (g *Graphics) removeShader(shader *Shader) { delete(g.shaders, shader.id) } type Image struct { id graphicsdriver.ImageID graphics *Graphics width int height int screen bool texture mtl.Texture stencil mtl.Texture } func (i *Image) ID() graphicsdriver.ImageID { return i.id } func (i *Image) internalSize() (int, int) { if i.screen { return i.width, i.height } return graphics.InternalImageSize(i.width), graphics.InternalImageSize(i.height) } func (i *Image) Dispose() { if i.stencil != (mtl.Texture{}) { i.stencil.Release() i.stencil = mtl.Texture{} } if i.texture != (mtl.Texture{}) { i.texture.Release() i.texture = mtl.Texture{} } i.graphics.removeImage(i) } func (i *Image) IsInvalidated() bool { // TODO: Does Metal cause context lost? // https://developer.apple.com/documentation/metal/mtlresource/1515898-setpurgeablestate // https://developer.apple.com/documentation/metal/mtldevicenotificationhandler return false } func (i *Image) syncTexture() { i.graphics.flushRenderCommandEncoderIfNeeded() // Calling SynchronizeTexture is ignored on iOS (see mtl.m), but it looks like committing BlitCommandEncoder // is necessary (#1337). if i.graphics.cb != (mtl.CommandBuffer{}) { panic("metal: command buffer must be empty at syncTexture: flushIfNeeded is not called yet?") } cb := i.graphics.cq.MakeCommandBuffer() bce := cb.MakeBlitCommandEncoder() bce.SynchronizeTexture(i.texture, 0, 0) bce.EndEncoding() cb.Commit() // TODO: Are fences available here? cb.WaitUntilCompleted() } func (i *Image) ReadPixels(buf []byte) error { if got, want := len(buf), 4*i.width*i.height; got != want { return fmt.Errorf("metal: len(buf) must be %d but %d at ReadPixels", want, got) } i.graphics.flushIfNeeded(false) i.syncTexture() i.texture.GetBytes(&buf[0], uintptr(4*i.width), mtl.Region{ Size: mtl.Size{Width: i.width, Height: i.height, Depth: 1}, }, 0) return nil } func (i *Image) WritePixels(args []*graphicsdriver.WritePixelsArgs) error { g := i.graphics g.flushRenderCommandEncoderIfNeeded() // Calculate the smallest texture size to include all the values in args. minX := math.MaxInt32 minY := math.MaxInt32 maxX := 0 maxY := 0 for _, a := range args { if minX > a.X { minX = a.X } if maxX < a.X+a.Width { maxX = a.X + a.Width } if minY > a.Y { minY = a.Y } if maxY < a.Y+a.Height { maxY = a.Y + a.Height } } w := maxX - minX h := maxY - minY // Use a temporary texture to send pixels asynchrounsly, whichever the memory is shared (e.g., iOS) or // managed (e.g., macOS). A temporary texture is needed since ReplaceRegion tries to sync the pixel // data between CPU and GPU, and doing it on the existing texture is inefficient (#1418). // The texture cannot be reused until sending the pixels finishes, then create new ones for each call. td := mtl.TextureDescriptor{ TextureType: mtl.TextureType2D, PixelFormat: mtl.PixelFormatRGBA8UNorm, Width: w, Height: h, StorageMode: storageMode, Usage: mtl.TextureUsageShaderRead | mtl.TextureUsageRenderTarget, } t := g.view.getMTLDevice().MakeTexture(td) g.tmpTextures = append(g.tmpTextures, t) for _, a := range args { t.ReplaceRegion(mtl.Region{ Origin: mtl.Origin{X: a.X - minX, Y: a.Y - minY, Z: 0}, Size: mtl.Size{Width: a.Width, Height: a.Height, Depth: 1}, }, 0, unsafe.Pointer(&a.Pixels[0]), 4*a.Width) } if g.cb == (mtl.CommandBuffer{}) { g.cb = i.graphics.cq.MakeCommandBuffer() } bce := g.cb.MakeBlitCommandEncoder() for _, a := range args { so := mtl.Origin{X: a.X - minX, Y: a.Y - minY, Z: 0} ss := mtl.Size{Width: a.Width, Height: a.Height, Depth: 1} do := mtl.Origin{X: a.X, Y: a.Y, Z: 0} bce.CopyFromTexture(t, 0, 0, so, ss, i.texture, 0, 0, do) } bce.EndEncoding() return nil } func (i *Image) mtlTexture() mtl.Texture { if i.screen { g := i.graphics if g.screenDrawable == (ca.MetalDrawable{}) { drawable := g.view.nextDrawable() if drawable == (ca.MetalDrawable{}) { return mtl.Texture{} } g.screenDrawable = drawable // After nextDrawable, it is expected some command buffers are completed. g.gcBuffers() } return g.screenDrawable.Texture() } return i.texture } func (i *Image) ensureStencil() { if i.stencil != (mtl.Texture{}) { return } td := mtl.TextureDescriptor{ TextureType: mtl.TextureType2D, PixelFormat: mtl.PixelFormatStencil8, Width: graphics.InternalImageSize(i.width), Height: graphics.InternalImageSize(i.height), StorageMode: mtl.StorageModePrivate, Usage: mtl.TextureUsageRenderTarget, } i.stencil = i.graphics.view.getMTLDevice().MakeTexture(td) }