// Copyright 2014 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ebiten import ( "fmt" "image" "image/color" "github.com/hajimehoshi/ebiten/v2/internal/driver" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/mipmap" ) // panicOnErrorAtImageAt indicates whether (*Image).At panics on an error or not. // This value is set only on testing. var panicOnErrorAtImageAt bool // Image represents a rectangle set of pixels. // The pixel format is alpha-premultiplied RGBA. // Image implements image.Image and draw.Image. type Image struct { // addr holds self to check copying. // See strings.Builder for similar examples. addr *Image mipmap *mipmap.Mipmap bounds image.Rectangle original *Image screen bool } func (i *Image) copyCheck() { if i.addr != i { panic("ebiten: illegal use of non-zero Image copied by value") } } // Size returns the size of the image. func (i *Image) Size() (width, height int) { s := i.Bounds().Size() return s.X, s.Y } func (i *Image) isDisposed() bool { return i.mipmap == nil } func (i *Image) isSubImage() bool { return i.original != nil } // Clear resets the pixels of the image into 0. // // When the image is disposed, Clear does nothing. func (i *Image) Clear() { i.Fill(color.Transparent) } // Fill fills the image with a solid color. // // When the image is disposed, Fill does nothing. func (i *Image) Fill(clr color.Color) { i.copyCheck() if i.isDisposed() { return } // TODO: Implement this. if i.isSubImage() { panic("ebiten: rendering to a sub-image is not implemented (Fill)") } i.mipmap.Fill(color.RGBAModel.Convert(clr).(color.RGBA)) } func canSkipMipmap(geom GeoM, filter driver.Filter) bool { det := geom.det2x2() if filter == driver.FilterNearest && det <= 1.001 { return true } if filter == driver.FilterLinear && det >= 0.999 { return true } return false } // DrawImageOptions represents options for DrawImage. type DrawImageOptions struct { // GeoM is a geometry matrix to draw. // The default (zero) value is identity, which draws the image at (0, 0). GeoM GeoM // ColorM is a color matrix to draw. // The default (zero) value is identity, which doesn't change any color. ColorM ColorM // CompositeMode is a composite mode to draw. // The default (zero) value is regular alpha blending. CompositeMode CompositeMode // Filter is a type of texture filter. // The default (zero) value is FilterNearest. Filter Filter } // DrawImage draws the given image on the image i. // // DrawImage accepts the options. For details, see the document of // DrawImageOptions. // // For drawing, the pixels of the argument image at the time of this call is // adopted. Even if the argument image is mutated after this call, the drawing // result is never affected. // // When the image i is disposed, DrawImage does nothing. // When the given image img is disposed, DrawImage panics. // // When the given image is as same as i, DrawImage panics. // // DrawImage works more efficiently as batches // when the successive calls of DrawImages satisfy the below conditions: // // * All render targets are same (A in A.DrawImage(B, op)) // * Either all ColorM element values are same or all the ColorM have only // diagonal ('scale') elements // * If only (*ColorM).Scale is applied to a ColorM, the ColorM has only // diagonal elements. The other ColorM functions might modify the other // elements. // * All CompositeMode values are same // * All Filter values are same // // Even when all the above conditions are satisfied, multiple draw commands can // be used in really rare cases. Ebiten images usually share an internal // automatic texture atlas, but when you consume the atlas, or you create a huge // image, those images cannot be on the same texture atlas. In this case, draw // commands are separated. The texture atlas size is 4096x4096 so far. Another // case is when you use an offscreen as a render source. An offscreen doesn't // share the texture atlas with high probability. // // For more performance tips, see https://ebiten.org/documents/performancetips.html func (i *Image) DrawImage(img *Image, options *DrawImageOptions) { i.copyCheck() if img.isDisposed() { panic("ebiten: the given image to DrawImage must not be disposed") } if i.isDisposed() { return } // TODO: Implement this. if i.isSubImage() { panic("ebiten: render to a sub-image is not implemented (DrawImage)") } // Calculate vertices before locking because the user can do anything in // options.ImageParts interface without deadlock (e.g. Call Image functions). if options == nil { options = &DrawImageOptions{} } bounds := img.Bounds() mode := driver.CompositeMode(options.CompositeMode) filter := driver.Filter(options.Filter) a, b, c, d, tx, ty := options.GeoM.elements32() sx0 := float32(bounds.Min.X) sy0 := float32(bounds.Min.Y) sx1 := float32(bounds.Max.X) sy1 := float32(bounds.Max.Y) vs := graphics.QuadVertices(sx0, sy0, sx1, sy1, a, b, c, d, tx, ty, 1, 1, 1, 1) is := graphics.QuadIndices() srcs := [graphics.ShaderImageNum]*mipmap.Mipmap{img.mipmap} i.mipmap.DrawTriangles(srcs, vs, is, options.ColorM.impl, mode, filter, driver.AddressUnsafe, driver.Region{}, [graphics.ShaderImageNum - 1][2]float32{}, nil, nil, canSkipMipmap(options.GeoM, filter)) } // Vertex represents a vertex passed to DrawTriangles. type Vertex struct { // DstX and DstY represents a point on a destination image. DstX float32 DstY float32 // SrcX and SrcY represents a point on a source image. // Be careful that SrcX/SrcY coordinates are on the image's bounds. // This means that a left-upper point of a sub-image might not be (0, 0). SrcX float32 SrcY float32 // ColorR/ColorG/ColorB/ColorA represents color scaling values. // 1 means the original source image color is used. // 0 means a transparent color is used. ColorR float32 ColorG float32 ColorB float32 ColorA float32 } // Address represents a sampler address mode. type Address int const ( // AddressUnsafe means there is no guarantee when the texture coodinates are out of range. AddressUnsafe Address = Address(driver.AddressUnsafe) // AddressClampToZero means that out-of-range texture coordinates return 0 (transparent). AddressClampToZero Address = Address(driver.AddressClampToZero) // AddressRepeat means that texture coordinates wrap to the other side of the texture. AddressRepeat Address = Address(driver.AddressRepeat) ) // DrawTrianglesOptions represents options for DrawTriangles. type DrawTrianglesOptions struct { // ColorM is a color matrix to draw. // The default (zero) value is identity, which doesn't change any color. // ColorM is applied before vertex color scale is applied. // // If Shader is not nil, ColorM is ignored. ColorM ColorM // CompositeMode is a composite mode to draw. // The default (zero) value is regular alpha blending. CompositeMode CompositeMode // Filter is a type of texture filter. // The default (zero) value is FilterNearest. Filter Filter // Address is a sampler address mode. // The default (zero) value is AddressUnsafe. Address Address } // MaxIndicesNum is the maximum number of indices for DrawTriangles. const MaxIndicesNum = graphics.IndicesNum // DrawTriangles draws triangles with the specified vertices and their indices. // // If len(indices) is not multiple of 3, DrawTriangles panics. // // If len(indices) is more than MaxIndicesNum, DrawTriangles panics. // // The rule in which DrawTriangles works effectively is same as DrawImage's. // // When the given image is disposed, DrawTriangles panics. // // When the image i is disposed, DrawTriangles does nothing. func (i *Image) DrawTriangles(vertices []Vertex, indices []uint16, img *Image, options *DrawTrianglesOptions) { i.copyCheck() if img != nil && img.isDisposed() { panic("ebiten: the given image to DrawTriangles must not be disposed") } if i.isDisposed() { return } if i.isSubImage() { panic("ebiten: render to a sub-image is not implemented (DrawTriangles)") } if len(indices)%3 != 0 { panic("ebiten: len(indices) % 3 must be 0") } if len(indices) > MaxIndicesNum { panic("ebiten: len(indices) must be <= MaxIndicesNum") } // TODO: Check the maximum value of indices and len(vertices)? if options == nil { options = &DrawTrianglesOptions{} } mode := driver.CompositeMode(options.CompositeMode) address := driver.Address(options.Address) var sr driver.Region if address != driver.AddressUnsafe { b := img.Bounds() sr = driver.Region{ X: float32(b.Min.X), Y: float32(b.Min.Y), Width: float32(b.Dx()), Height: float32(b.Dy()), } } filter := driver.Filter(options.Filter) // TODO: Use the same backend as graphics.QuadVertices. vs := make([]float32, len(vertices)*graphics.VertexFloatNum) for i, v := range vertices { vs[i*graphics.VertexFloatNum] = v.DstX vs[i*graphics.VertexFloatNum+1] = v.DstY vs[i*graphics.VertexFloatNum+2] = v.SrcX vs[i*graphics.VertexFloatNum+3] = v.SrcY vs[i*graphics.VertexFloatNum+4] = v.ColorR vs[i*graphics.VertexFloatNum+5] = v.ColorG vs[i*graphics.VertexFloatNum+6] = v.ColorB vs[i*graphics.VertexFloatNum+7] = v.ColorA } is := make([]uint16, len(indices)) copy(is, indices) srcs := [graphics.ShaderImageNum]*mipmap.Mipmap{img.mipmap} i.mipmap.DrawTriangles(srcs, vs, is, options.ColorM.impl, mode, filter, address, sr, [graphics.ShaderImageNum - 1][2]float32{}, nil, nil, false) } // DrawTrianglesShaderOptions represents options for DrawTrianglesShader. // // This API is experimental. type DrawTrianglesShaderOptions struct { // CompositeMode is a composite mode to draw. // The default (zero) value is regular alpha blending. CompositeMode CompositeMode // Uniforms is a set of uniform variables for the shader. // The keys are the names of the uniform variables. // The values must be float or []float. // If the uniform variable type is an array, a vector or a matrix, // you have to specify linearly flattened values as a slice. // For example, if the uniform variable type is [4]vec4, the number of the slice values will be 16. Uniforms map[string]interface{} // Images is a set of the source images. // All the image must be the same size. Images [4]*Image } func init() { var op DrawTrianglesShaderOptions if got, want := len(op.Images), graphics.ShaderImageNum; got != want { panic(fmt.Sprintf("ebiten: len((DrawTrianglesShaderOptions{}).Images) must be %d but %d", want, got)) } } // DrawTrianglesShader draws triangles with the specified vertices and their indices with the specified shader. // // For the details about the shader, see https://ebiten.org/documents/shader.html. // // If len(indices) is not multiple of 3, DrawTrianglesShader panics. // // If len(indices) is more than MaxIndicesNum, DrawTrianglesShader panics. // // When a specified image is non-nil and is disposed, DrawTrianglesShader panics. // // When the image i is disposed, DrawTrianglesShader does nothing. // // This API is experimental. func (i *Image) DrawTrianglesShader(vertices []Vertex, indices []uint16, shader *Shader, options *DrawTrianglesShaderOptions) { i.copyCheck() if i.isDisposed() { return } if i.isSubImage() { panic("ebiten: render to a sub-image is not implemented (DrawTrianglesShader)") } if len(indices)%3 != 0 { panic("ebiten: len(indices) % 3 must be 0") } if len(indices) > MaxIndicesNum { panic("ebiten: len(indices) must be <= MaxIndicesNum") } // TODO: Check the maximum value of indices and len(vertices)? if options == nil { options = &DrawTrianglesShaderOptions{} } mode := driver.CompositeMode(options.CompositeMode) vs := make([]float32, len(vertices)*graphics.VertexFloatNum) for i, v := range vertices { vs[i*graphics.VertexFloatNum] = v.DstX vs[i*graphics.VertexFloatNum+1] = v.DstY vs[i*graphics.VertexFloatNum+2] = v.SrcX vs[i*graphics.VertexFloatNum+3] = v.SrcY vs[i*graphics.VertexFloatNum+4] = v.ColorR vs[i*graphics.VertexFloatNum+5] = v.ColorG vs[i*graphics.VertexFloatNum+6] = v.ColorB vs[i*graphics.VertexFloatNum+7] = v.ColorA } is := make([]uint16, len(indices)) copy(is, indices) var imgs [graphics.ShaderImageNum]*mipmap.Mipmap var imgw, imgh int for i, img := range options.Images { if img == nil { continue } if img.isDisposed() { panic("ebiten: the given image to DrawRectShader must not be disposed") } if i == 0 { imgw, imgh = img.Size() } else { // TODO: Check imgw > 0 && imgh > 0 if w, h := img.Size(); imgw != w || imgh != h { panic("ebiten: all the source images must be the same size with the rectangle") } } imgs[i] = img.mipmap } var sx, sy float32 if options.Images[0] != nil { b := options.Images[0].Bounds() sx = float32(b.Min.X) sy = float32(b.Min.Y) } var sr driver.Region if img := options.Images[0]; img != nil { b := img.Bounds() sr = driver.Region{ X: float32(b.Min.X), Y: float32(b.Min.Y), Width: float32(b.Dx()), Height: float32(b.Dy()), } } var offsets [graphics.ShaderImageNum - 1][2]float32 for i, img := range options.Images[1:] { if img == nil { continue } b := img.Bounds() offsets[i][0] = -sx + float32(b.Min.X) offsets[i][1] = -sy + float32(b.Min.Y) } us := shader.convertUniforms(options.Uniforms) i.mipmap.DrawTriangles(imgs, vs, is, nil, mode, driver.FilterNearest, driver.AddressUnsafe, sr, offsets, shader.shader, us, false) } // DrawRectShaderOptions represents options for DrawRectShader. // // This API is experimental. type DrawRectShaderOptions struct { // GeoM is a geometry matrix to draw. // The default (zero) value is identity, which draws the rectangle at (0, 0). GeoM GeoM // CompositeMode is a composite mode to draw. // The default (zero) value is regular alpha blending. CompositeMode CompositeMode // Uniforms is a set of uniform variables for the shader. // The keys are the names of the uniform variables. // The values must be float or []float. // If the uniform variable type is an array, a vector or a matrix, // you have to specify linearly flattened values as a slice. // For example, if the uniform variable type is [4]vec4, the number of the slice values will be 16. Uniforms map[string]interface{} // Images is a set of the source images. // All the image must be the same size with the rectangle. Images [4]*Image } func init() { var op DrawRectShaderOptions if got, want := len(op.Images), graphics.ShaderImageNum; got != want { panic(fmt.Sprintf("ebiten: len((DrawRectShaderOptions{}).Images) must be %d but %d", want, got)) } } // DrawRectShader draws a rectangle with the specified width and height with the specified shader. // // For the details about the shader, see https://ebiten.org/documents/shader.html. // // When one of the specified image is non-nil and is disposed, DrawRectShader panics. // // When the image i is disposed, DrawRectShader does nothing. // // This API is experimental. func (i *Image) DrawRectShader(width, height int, shader *Shader, options *DrawRectShaderOptions) { i.copyCheck() if i.isDisposed() { return } // TODO: Implement this. if i.isSubImage() { panic("ebiten: rendering to a sub-image is not implemented (DrawRectShader)") } if options == nil { options = &DrawRectShaderOptions{} } mode := driver.CompositeMode(options.CompositeMode) var imgs [graphics.ShaderImageNum]*mipmap.Mipmap for i, img := range options.Images { if img == nil { continue } if img.isDisposed() { panic("ebiten: the given image to DrawRectShader must not be disposed") } if w, h := img.Size(); width != w || height != h { panic("ebiten: all the source images must be the same size with the rectangle") } imgs[i] = img.mipmap } var sx, sy float32 if options.Images[0] != nil { b := options.Images[0].Bounds() sx = float32(b.Min.X) sy = float32(b.Min.Y) } a, b, c, d, tx, ty := options.GeoM.elements32() vs := graphics.QuadVertices(sx, sy, sx+float32(width), sy+float32(height), a, b, c, d, tx, ty, 1, 1, 1, 1) is := graphics.QuadIndices() var sr driver.Region if img := options.Images[0]; img != nil { b := img.Bounds() sr = driver.Region{ X: float32(b.Min.X), Y: float32(b.Min.Y), Width: float32(b.Dx()), Height: float32(b.Dy()), } } var offsets [graphics.ShaderImageNum - 1][2]float32 for i, img := range options.Images[1:] { if img == nil { continue } b := img.Bounds() offsets[i][0] = -sx + float32(b.Min.X) offsets[i][1] = -sy + float32(b.Min.Y) } us := shader.convertUniforms(options.Uniforms) i.mipmap.DrawTriangles(imgs, vs, is, nil, mode, driver.FilterNearest, driver.AddressUnsafe, sr, offsets, shader.shader, us, canSkipMipmap(options.GeoM, driver.FilterNearest)) } // SubImage returns an image representing the portion of the image p visible through r. // The returned value shares pixels with the original image. // // The returned value is always *ebiten.Image. // // If the image is disposed, SubImage returns nil. // // In the current Ebiten implementation, SubImage is available only as a rendering source. func (i *Image) SubImage(r image.Rectangle) image.Image { i.copyCheck() if i.isDisposed() { return nil } r = r.Intersect(i.Bounds()) // Need to check Empty explicitly. See the standard image package implementations. if r.Empty() { r = image.ZR } // Keep the original image's reference not to dispose that by GC. var orig = i if i.isSubImage() { orig = i.original } img := &Image{ mipmap: i.mipmap, bounds: r, original: orig, } img.addr = img return img } // Bounds returns the bounds of the image. func (i *Image) Bounds() image.Rectangle { if i.isDisposed() { panic("ebiten: the image is already disposed") } return i.bounds } // ColorModel returns the color model of the image. func (i *Image) ColorModel() color.Model { return color.RGBAModel } // At returns the color of the image at (x, y). // // At loads pixels from GPU to system memory if necessary, which means that At can be slow. // // At always returns a transparent color if the image is disposed. // // Note that an important logic should not rely on values returned by At, since // the returned values can include very slight differences between some machines. // // At can't be called outside the main loop (ebiten.Run's updating function) starts. func (i *Image) At(x, y int) color.Color { if i.isDisposed() { return color.RGBA{} } if !image.Pt(x, y).In(i.Bounds()) { return color.RGBA{} } pix, err := i.mipmap.Pixels(x, y, 1, 1) if err != nil { if panicOnErrorAtImageAt { panic(err) } theUIContext.setError(err) return color.RGBA{} } return color.RGBA{pix[0], pix[1], pix[2], pix[3]} } // Set sets the color at (x, y). // // Set loads pixels from GPU to system memory if necessary, which means that Set can be slow. // // In the current implementation, successive calls of Set invokes loading pixels at most once, so this is efficient. // // If the image is disposed, Set does nothing. func (i *Image) Set(x, y int, clr color.Color) { i.copyCheck() if i.isDisposed() { return } if !image.Pt(x, y).In(i.Bounds()) { return } if i.isSubImage() { i = i.original } r, g, b, a := clr.RGBA() pix := []byte{byte(r >> 8), byte(g >> 8), byte(b >> 8), byte(a >> 8)} if err := i.mipmap.ReplacePixels(pix, x, y, 1, 1); err != nil { theUIContext.setError(err) } } // Dispose disposes the image data. // After disposing, most of image functions do nothing and returns meaningless values. // // Calling Dispose is not mandatory. GC automatically collects internal resources that no objects refer to. // However, calling Dispose explicitly is helpful if memory usage matters. // // When the image is disposed, Dipose does nothing. func (i *Image) Dispose() { i.copyCheck() if i.isDisposed() { return } if i.isSubImage() { return } i.mipmap.MarkDisposed() i.mipmap = nil } // ReplacePixels replaces the pixels of the image with p. // // The given p must represent RGBA pre-multiplied alpha values. // len(pix) must equal to 4 * (bounds width) * (bounds height). // // ReplacePixels works on a sub-image. // // When len(pix) is not appropriate, ReplacePixels panics. // // When the image is disposed, ReplacePixels does nothing. func (i *Image) ReplacePixels(pixels []byte) { i.copyCheck() if i.isDisposed() { return } r := i.Bounds() // Do not need to copy pixels here. // * In internal/mipmap, pixels are copied when necessary. // * In internal/shareable, pixels are copied to make its paddings. if err := i.mipmap.ReplacePixels(pixels, r.Min.X, r.Min.Y, r.Dx(), r.Dy()); err != nil { theUIContext.setError(err) } } // NewImage returns an empty image. // // If width or height is less than 1 or more than device-dependent maximum size, NewImage panics. func NewImage(width, height int) *Image { i := &Image{ mipmap: mipmap.New(width, height), bounds: image.Rect(0, 0, width, height), } i.addr = i return i } // NewImageFromImage creates a new image with the given image (source). // // If source's width or height is less than 1 or more than device-dependent maximum size, NewImageFromImage panics. func NewImageFromImage(source image.Image) *Image { size := source.Bounds().Size() width, height := size.X, size.Y i := &Image{ mipmap: mipmap.New(width, height), bounds: image.Rect(0, 0, width, height), } i.addr = i i.ReplacePixels(imageToBytes(source)) return i } func newScreenFramebufferImage(width, height int) *Image { i := &Image{ mipmap: mipmap.NewScreenFramebufferMipmap(width, height), bounds: image.Rect(0, 0, width, height), } i.addr = i i.screen = true return i }