// Copyright 2019 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // +build example jsgo package main import ( "bytes" "errors" "fmt" "image" "image/color" _ "image/png" "log" "math" "sort" "github.com/hajimehoshi/ebiten" "github.com/hajimehoshi/ebiten/ebitenutil" "github.com/hajimehoshi/ebiten/examples/resources/images" "github.com/hajimehoshi/ebiten/inpututil" ) const ( screenWidth = 240 screenHeight = 240 ) var ( bgImage *ebiten.Image shadowImage *ebiten.Image triangleImage *ebiten.Image ) func init() { // Decode image from a byte slice instead of a file so that // this example works in any working directory. // If you want to use a file, there are some options: // 1) Use os.Open and pass the file to the image decoder. // This is a very regular way, but doesn't work on browsers. // 2) Use ebitenutil.OpenFile and pass the file to the image decoder. // This works even on browsers. // 3) Use ebitenutil.NewImageFromFile to create an ebiten.Image directly from a file. // This also works on browsers. img, _, err := image.Decode(bytes.NewReader(images.Tile_png)) if err != nil { log.Fatal(err) } bgImage, _ = ebiten.NewImageFromImage(img, ebiten.FilterDefault) shadowImage, _ = ebiten.NewImage(screenWidth, screenHeight, ebiten.FilterDefault) triangleImage, _ = ebiten.NewImage(screenWidth, screenHeight, ebiten.FilterDefault) triangleImage.Fill(color.White) } type Line struct { X1, Y1, X2, Y2 float64 } func (l *Line) angle() float64 { return math.Atan2(l.Y2-l.Y1, l.X2-l.X1) } func newRay(x, y, length, angle float64) Line { return Line{ X1: x, Y1: y, X2: x + length*math.Cos(angle), Y2: y + length*math.Sin(angle), } } // intersection calculates the intersection of given two lines. func intersection(l1, l2 Line) (float64, float64, error) { // https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection#Given_two_points_on_each_line denom := (l1.X1-l1.X2)*(l2.Y1-l2.Y2) - (l1.Y1-l1.Y2)*(l2.X1-l2.X2) tNum := (l1.X1-l2.X1)*(l2.Y1-l2.Y2) - (l1.Y1-l2.Y1)*(l2.X1-l2.X2) uNum := -((l1.X1-l1.X2)*(l1.Y1-l2.Y1) - (l1.Y1-l1.Y2)*(l1.X1-l2.X1)) if denom == 0 { return 0, 0, errors.New("lines parallel or coincident") } t := tNum / denom if t > 1 || t < 0 { return 0, 0, errors.New("lines intersect, segments do not") } u := uNum / denom if u > 1 || u < 0 { return 0, 0, errors.New("lines intersect, segments do not") } x := l1.X1 + t*(l1.X2-l1.X1) y := l1.Y1 + t*(l1.Y2-l1.Y1) return x, y, nil } // rayCasting returns a slice of Line originating from point cx, cy and intersecting with objects func rayCasting(cx, cy float64, objects [][]Line) []Line { var rays []Line const rayLength = 1000 // something large enough to reach all objects for _, obj := range objects { // Get one of the endpoints for all segments, // + the startpoint of the first one, for non-closed paths var objPoints [][2]float64 for _, wall := range obj { objPoints = append(objPoints, [2]float64{wall.X2, wall.Y2}) } objPoints = append(objPoints, [2]float64{obj[0].X1, obj[0].Y1}) // Cast two rays per point for _, p := range objPoints { l := Line{cx, cy, p[0], p[1]} angle := l.angle() for _, offset := range []float64{-0.005, 0.005} { points := [][2]float64{} ray := newRay(cx, cy, rayLength, angle+offset) // Unpack all objects for _, o := range objects { for _, wall := range o { if px, py, err := intersection(ray, wall); err == nil { points = append(points, [2]float64{px, py}) } } } // Find the point closest to start of ray min := math.Inf(1) var minI = -1 for i, p := range points { d2 := (cx-p[0])*(cx-p[0]) + (cy-p[1])*(cy-p[1]) if d2 < min { min = d2 minI = i } } rays = append(rays, Line{cx, cy, points[minI][0], points[minI][1]}) } } } // Sort rays based on angle, otherwise light triangles will not come out right sort.Slice(rays, func(i int, j int) bool { return rays[i].angle() < rays[j].angle() }) return rays } func vertices(x1, y1, x2, y2, x3, y3 float64) []ebiten.Vertex { return []ebiten.Vertex{ {float32(x1), float32(y1), 0, 0, 1, 1, 1, 1}, {float32(x2), float32(y2), 0, 0, 1, 1, 1, 1}, {float32(x3), float32(y3), 0, 0, 1, 1, 1, 1}, } } func rect(x, y, w, h float64) []Line { return []Line{ {x, y, x, y + h}, {x, y + h, x + w, y + h}, {x + w, y + h, x + w, y}, {x + w, y, x, y}, } } func handleMovement() { if ebiten.IsKeyPressed(ebiten.KeyD) || ebiten.IsKeyPressed(ebiten.KeyRight) { px += 4 } if ebiten.IsKeyPressed(ebiten.KeyS) || ebiten.IsKeyPressed(ebiten.KeyDown) { py += 4 } if ebiten.IsKeyPressed(ebiten.KeyA) || ebiten.IsKeyPressed(ebiten.KeyLeft) { px -= 4 } if ebiten.IsKeyPressed(ebiten.KeyW) || ebiten.IsKeyPressed(ebiten.KeyUp) { py -= 4 } // +1/-1 is to stop player before it reaches the border if px >= screenHeight-padding { px = screenHeight - padding - 1 } if px <= padding { px = padding + 1 } if py >= screenWidth-padding { py = screenWidth - padding - 1 } if py <= padding { py = padding + 1 } } func update(screen *ebiten.Image) error { if inpututil.IsKeyJustPressed(ebiten.KeyEscape) { return errors.New("game ended by player") } if inpututil.IsKeyJustPressed(ebiten.KeyR) { showRays = !showRays } handleMovement() if ebiten.IsDrawingSkipped() { return nil } // Reset the shadowImage shadowImage.Fill(color.Black) rays := rayCasting(px, py, objects) // Subtract ray triangles from shadow opt := &ebiten.DrawTrianglesOptions{} opt.Address = ebiten.AddressRepeat opt.CompositeMode = ebiten.CompositeModeSourceOut for i, line := range rays { nextLine := rays[(i+1)%len(rays)] // Draw triangle of area between rays v := vertices(px, py, nextLine.X2, nextLine.Y2, line.X2, line.Y2) shadowImage.DrawTriangles(v, []uint16{0, 1, 2}, triangleImage, opt) } // Draw background screen.DrawImage(bgImage, &ebiten.DrawImageOptions{}) if showRays { // Draw rays for _, r := range rays { ebitenutil.DrawLine(screen, r.X1, r.Y1, r.X2, r.Y2, color.RGBA{255, 255, 0, 150}) } } // Draw shadow op := &ebiten.DrawImageOptions{} op.ColorM.Scale(1, 1, 1, 0.7) screen.DrawImage(shadowImage, op) // Draw walls for _, wall := range objects { for _, w := range wall { ebitenutil.DrawLine(screen, w.X1, w.Y1, w.X2, w.Y2, color.RGBA{255, 0, 0, 255}) } } // Draw player as a rect ebitenutil.DrawRect(screen, px-2, py-2, 4, 4, color.Black) ebitenutil.DrawRect(screen, px-1, py-1, 2, 2, color.RGBA{255, 100, 100, 255}) if showRays { ebitenutil.DebugPrintAt(screen, "R: hide rays", padding, 0) } else { ebitenutil.DebugPrintAt(screen, "R: show rays", padding, 0) } ebitenutil.DebugPrintAt(screen, "WASD: move", 160, 0) ebitenutil.DebugPrintAt(screen, fmt.Sprintf("TPS: %0.2f", ebiten.CurrentTPS()), 51, 51) return nil } var ( showRays bool px, py float64 objects [][]Line ) const padding = 20 func main() { px = screenWidth / 2 py = screenHeight / 2 // Add outer walls objects = append(objects, rect(padding, padding, screenWidth-2*padding, screenHeight-2*padding)) // Angled wall objects = append(objects, []Line{{50, 110, 100, 150}}) // Rectangles objects = append(objects, rect(45, 50, 70, 20)) objects = append(objects, rect(150, 50, 30, 60)) if err := ebiten.Run(update, screenWidth, screenHeight, 2, "Ray casting and shadows (Ebiten demo)"); err != nil { log.Fatal(err) } }