// Copyright 2016 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package restorable import ( "errors" "fmt" "github.com/hajimehoshi/ebiten/internal/affine" "github.com/hajimehoshi/ebiten/internal/graphics" "github.com/hajimehoshi/ebiten/internal/graphicscommand" ) // drawImageHistoryItem is an item for history of draw-image commands. type drawImageHistoryItem struct { image *Image vertices []float32 indices []uint16 colorm *affine.ColorM mode graphics.CompositeMode filter graphics.Filter address graphics.Address } // Image represents an image that can be restored when GL context is lost. type Image struct { image *graphicscommand.Image basePixels []byte // drawImageHistory is a set of draw-image commands. // TODO: This should be merged with the similar command queue in package graphics (#433). drawImageHistory []*drawImageHistoryItem // stale indicates whether the image needs to be synced with GPU as soon as possible. stale bool // volatile indicates whether the image is cleared whenever a frame starts. volatile bool // screen indicates whether the image is used as an actual screen. screen bool w2 int h2 int // priority indicates whether the image is restored in high priority when context-lost happens. priority bool } var dummyImage *Image func init() { dummyImage = &Image{ image: graphicscommand.NewImage(16, 16), priority: true, } theImages.add(dummyImage) } // NewImage creates an empty image with the given size. // // The returned image is cleared. // // Note that Dispose is not called automatically. func NewImage(width, height int, volatile bool) *Image { i := &Image{ image: graphicscommand.NewImage(width, height), volatile: volatile, } i.clear() theImages.add(i) return i } // NewScreenFramebufferImage creates a special image that framebuffer is one for the screen. // // The returned image is cleared. // // Note that Dispose is not called automatically. func NewScreenFramebufferImage(width, height int) *Image { i := &Image{ image: graphicscommand.NewScreenFramebufferImage(width, height), screen: true, } i.clear() theImages.add(i) return i } func (i *Image) clear() { if i.priority { panic("not reached") } // There are not 'drawImageHistoryItem's for this image and dummyImage. // As dummyImage is a priority image, this is restored before other regular images are restored. w, h := i.Size() sw, sh := dummyImage.Size() dw := graphics.NextPowerOf2Int(w) dh := graphics.NextPowerOf2Int(h) vs := graphics.QuadVertices(dw, dh, 0, 0, sw, sh, float32(dw)/float32(sw), 0, 0, float32(dh)/float32(sh), 0, 0, 1, 1, 1, 1) is := graphics.QuadIndices() i.image.DrawImage(dummyImage.image, vs, is, nil, graphics.CompositeModeClear, graphics.FilterNearest, graphics.AddressClampToZero) i.basePixels = nil i.drawImageHistory = nil i.stale = false } func (i *Image) IsVolatile() bool { return i.volatile } // BasePixelsForTesting returns the image's basePixels for testing. func (i *Image) BasePixelsForTesting() []byte { return i.basePixels } // Pixels returns the image's pixel bytes. // // Pixels tries to read pixels from GPU if needed. // It is assured that GPU is not accessed if the opration against the image is only ReplacePixels. func (i *Image) Pixels() []byte { i.readPixelsFromGPUIfNeeded() return i.basePixels } // Size returns the image's size. func (i *Image) Size() (int, int) { return i.image.Size() } // SizePowerOf2 returns the next power of 2 values for the size. func (i *Image) SizePowerOf2() (int, int) { if i.w2 == 0 || i.h2 == 0 { w, h := i.image.Size() i.w2 = graphics.NextPowerOf2Int(w) i.h2 = graphics.NextPowerOf2Int(h) } return i.w2, i.h2 } // makeStale makes the image stale. func (i *Image) makeStale() { i.basePixels = nil i.drawImageHistory = nil i.stale = true // Don't have to call makeStale recursively here. // Restoring is done after topological sorting is done. // If an image depends on another stale image, this means that // the former image can be restored from the latest state of the latter image. } func (i *Image) CopyPixels(src *Image) { // TODO: Avoid making other images stale if possible. (#514) // For this purpuse, images should remember which part of that is used for DrawImage. theImages.makeStaleIfDependingOn(i) i.image.CopyPixels(src.image) // As pixels should not be obtained here, making the image stale is inevitable. i.makeStale() } // ReplacePixels replaces the image pixels with the given pixels slice. // // If pixels is nil, ReplacePixels clears the specified reagion. func (i *Image) ReplacePixels(pixels []byte, x, y, width, height int) { w, h := i.image.Size() if width <= 0 || height <= 0 { panic("restorable: width/height must be positive") } if x < 0 || y < 0 || w <= x || h <= y || x+width <= 0 || y+height <= 0 || w < x+width || h < y+height { panic(fmt.Sprintf("restorable: out of range x: %d, y: %d, width: %d, height: %d", x, y, width, height)) } // TODO: Avoid making other images stale if possible. (#514) // For this purpuse, images should remember which part of that is used for DrawImage. theImages.makeStaleIfDependingOn(i) if pixels == nil { pixels = make([]byte, 4*width*height) } i.image.ReplacePixels(pixels, x, y, width, height) if !IsRestoringEnabled() { i.makeStale() return } if x == 0 && y == 0 && width == w && height == h { if pixels != nil { if i.basePixels == nil { i.basePixels = make([]byte, 4*w*h) } copy(i.basePixels, pixels) } else { // If basePixels is nil, the restored pixels are cleared. // See restore() implementation. i.basePixels = nil } i.drawImageHistory = nil i.stale = false return } if len(i.drawImageHistory) > 0 { panic("restorable: ReplacePixels for a part after DrawImage is forbidden") } if i.stale { return } idx := 4 * (y*w + x) if pixels != nil { if i.basePixels == nil { i.basePixels = make([]byte, 4*w*h) } for j := 0; j < height; j++ { copy(i.basePixels[idx:idx+4*width], pixels[4*j*width:4*(j+1)*width]) idx += 4 * w } } else if i.basePixels != nil { zeros := make([]byte, 4*width) for j := 0; j < height; j++ { copy(i.basePixels[idx:idx+4*width], zeros) idx += 4 * w } } } // DrawImage draws a given image img to the image. func (i *Image) DrawImage(img *Image, vertices []float32, indices []uint16, colorm *affine.ColorM, mode graphics.CompositeMode, filter graphics.Filter, address graphics.Address) { if i.priority { panic("not reached") } if len(vertices) == 0 { return } theImages.makeStaleIfDependingOn(i) if img.stale || img.volatile || i.screen || !IsRestoringEnabled() || i.volatile { i.makeStale() } else { i.appendDrawImageHistory(img, vertices, indices, colorm, mode, filter, address) } i.image.DrawImage(img.image, vertices, indices, colorm, mode, filter, address) } // appendDrawImageHistory appends a draw-image history item to the image. func (i *Image) appendDrawImageHistory(image *Image, vertices []float32, indices []uint16, colorm *affine.ColorM, mode graphics.CompositeMode, filter graphics.Filter, address graphics.Address) { if i.stale || i.volatile || i.screen { return } const maxDrawImageHistoryNum = 100 if len(i.drawImageHistory)+1 > maxDrawImageHistoryNum { i.makeStale() return } // All images must be resolved and not stale each after frame. // So we don't have to care if image is stale or not here. item := &drawImageHistoryItem{ image: image, vertices: vertices, indices: indices, colorm: colorm, mode: mode, filter: filter, address: address, } i.drawImageHistory = append(i.drawImageHistory, item) } func (i *Image) readPixelsFromGPUIfNeeded() { if i.basePixels == nil || len(i.drawImageHistory) > 0 || i.stale { graphicscommand.FlushCommands() i.readPixelsFromGPU() i.drawImageHistory = nil i.stale = false } } // At returns a color value at (x, y). // // Note that this must not be called until context is available. func (i *Image) At(x, y int) (byte, byte, byte, byte) { w, h := i.image.Size() if x < 0 || y < 0 || w <= x || h <= y { return 0, 0, 0, 0 } i.readPixelsFromGPUIfNeeded() // Even after readPixelsFromGPU, basePixels might be nil when OpenGL error happens. if i.basePixels == nil { return 0, 0, 0, 0 } idx := 4*x + 4*y*w return i.basePixels[idx], i.basePixels[idx+1], i.basePixels[idx+2], i.basePixels[idx+3] } // makeStaleIfDependingOn makes the image stale if the image depends on target. func (i *Image) makeStaleIfDependingOn(target *Image) { if i.stale { return } if i.dependsOn(target) { i.makeStale() } } // readPixelsFromGPU reads the pixels from GPU and resolves the image's 'stale' state. func (i *Image) readPixelsFromGPU() { i.basePixels = i.image.Pixels() i.drawImageHistory = nil i.stale = false } // resolveStale resolves the image's 'stale' state. func (i *Image) resolveStale() { if !IsRestoringEnabled() { return } if i.volatile { return } if i.screen { return } if !i.stale { return } i.readPixelsFromGPU() } // dependsOn returns a boolean value indicating whether the image depends on target. func (i *Image) dependsOn(target *Image) bool { for _, c := range i.drawImageHistory { if c.image == target { return true } } return false } // dependingImages returns all images that is depended by the image. func (i *Image) dependingImages() map[*Image]struct{} { r := map[*Image]struct{}{} for _, c := range i.drawImageHistory { r[c.image] = struct{}{} } return r } // hasDependency returns a boolean value indicating whether the image depends on another image. func (i *Image) hasDependency() bool { if i.stale { return false } return len(i.drawImageHistory) > 0 } // Restore restores *graphicscommand.Image from the pixels using its state. func (i *Image) restore() error { w, h := i.image.Size() if i.screen { // The screen image should also be recreated because framebuffer might // be changed. i.image = graphicscommand.NewScreenFramebufferImage(w, h) i.basePixels = nil i.drawImageHistory = nil i.stale = false return nil } if i.volatile { i.image = graphicscommand.NewImage(w, h) i.clear() return nil } if i.stale { // TODO: panic here? return errors.New("restorable: pixels must not be stale when restoring") } gimg := graphicscommand.NewImage(w, h) if i.basePixels != nil { gimg.ReplacePixels(i.basePixels, 0, 0, w, h) } else { // Clear the image explicitly. // TODO: Is dummyImage available for clearing? pix := make([]uint8, w*h*4) gimg.ReplacePixels(pix, 0, 0, w, h) } for _, c := range i.drawImageHistory { // All dependencies must be already resolved. if c.image.hasDependency() { panic("not reached") } gimg.DrawImage(c.image.image, c.vertices, c.indices, c.colorm, c.mode, c.filter, c.address) } i.image = gimg i.basePixels = gimg.Pixels() i.drawImageHistory = nil i.stale = false return nil } // Dispose disposes the image. // // After disposing, calling the function of the image causes unexpected results. func (i *Image) Dispose() { theImages.remove(i) i.image.Dispose() i.image = nil i.basePixels = nil i.drawImageHistory = nil i.stale = false } // IsInvalidated returns a boolean value indicating whether the image is invalidated. // // If an image is invalidated, GL context is lost and all the images should be restored asap. func (i *Image) IsInvalidated() (bool, error) { // FlushCommands is required because c.offscreen.impl might not have an actual texture. graphicscommand.FlushCommands() if !IsRestoringEnabled() { return false, nil } return i.image.IsInvalidated(), nil }