// Copyright 2022 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ui import ( "fmt" "image" "math" "github.com/hajimehoshi/ebiten/v2/internal/atlas" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" "github.com/hajimehoshi/ebiten/v2/internal/mipmap" ) // panicOnErrorOnReadingPixels indicates whether reading pixels panics on an error or not. // This value is set only on testing. var panicOnErrorOnReadingPixels bool func SetPanicOnErrorOnReadingPixelsForTesting(value bool) { panicOnErrorOnReadingPixels = value } const bigOffscreenScale = 2 type Image struct { ui *UserInterface mipmap *mipmap.Mipmap width int height int imageType atlas.ImageType // lastBlend is the lastly-used blend for mipmap.Image. lastBlend graphicsdriver.Blend // bigOffscreenBuffer is a double-sized offscreen for anti-alias rendering. bigOffscreenBuffer *bigOffscreenImage // modifyCallback is a callback called when DrawTriangles or WritePixels is called. // modifyCallback is useful to detect whether the image is manipulated or not after a certain time. modifyCallback func() tmpVerticesForFill []float32 } func (u *UserInterface) NewImage(width, height int, imageType atlas.ImageType) *Image { return &Image{ ui: u, mipmap: mipmap.New(width, height, imageType), width: width, height: height, imageType: imageType, lastBlend: graphicsdriver.BlendSourceOver, } } func (i *Image) Deallocate() { if i.mipmap == nil { return } if i.bigOffscreenBuffer != nil { i.bigOffscreenBuffer.deallocate() } i.mipmap.Deallocate() } func (i *Image) DrawTriangles(srcs [graphics.ShaderImageCount]*Image, vertices []float32, indices []uint32, blend graphicsdriver.Blend, dstRegion image.Rectangle, srcRegions [graphics.ShaderImageCount]image.Rectangle, shader *Shader, uniforms []uint32, fillRule graphicsdriver.FillRule, canSkipMipmap bool, antialias bool) { if i.modifyCallback != nil { i.modifyCallback() } i.lastBlend = blend if antialias { if i.bigOffscreenBuffer == nil { var imageType atlas.ImageType switch i.imageType { case atlas.ImageTypeRegular, atlas.ImageTypeUnmanaged: imageType = atlas.ImageTypeUnmanaged case atlas.ImageTypeScreen, atlas.ImageTypeVolatile: imageType = atlas.ImageTypeVolatile default: panic(fmt.Sprintf("ui: unexpected image type: %d", imageType)) } i.bigOffscreenBuffer = i.ui.newBigOffscreenImage(i, imageType) } i.bigOffscreenBuffer.drawTriangles(srcs, vertices, indices, blend, dstRegion, srcRegions, shader, uniforms, fillRule, canSkipMipmap) return } i.flushBufferIfNeeded() var srcMipmaps [graphics.ShaderImageCount]*mipmap.Mipmap for i, src := range srcs { if src == nil { continue } src.flushBufferIfNeeded() srcMipmaps[i] = src.mipmap } i.mipmap.DrawTriangles(srcMipmaps, vertices, indices, blend, dstRegion, srcRegions, shader.shader, uniforms, fillRule, canSkipMipmap) } func (i *Image) WritePixels(pix []byte, region image.Rectangle) { if i.modifyCallback != nil { i.modifyCallback() } i.flushBufferIfNeeded() i.mipmap.WritePixels(pix, region) } func (i *Image) ReadPixels(pixels []byte, region image.Rectangle) { // Check the error existence and avoid unnecessary calls. if i.ui.error() != nil { return } i.flushBigOffscreenBufferIfNeeded() if err := i.ui.readPixels(i.mipmap, pixels, region); err != nil { if panicOnErrorOnReadingPixels { panic(err) } i.ui.setError(err) } } func (i *Image) DumpScreenshot(name string, blackbg bool) (string, error) { i.flushBufferIfNeeded() return i.ui.dumpScreenshot(i.mipmap, name, blackbg) } func (i *Image) flushBufferIfNeeded() { i.flushBigOffscreenBufferIfNeeded() } func (i *Image) flushBigOffscreenBufferIfNeeded() { if i.bigOffscreenBuffer != nil { i.bigOffscreenBuffer.flush() } } func (u *UserInterface) DumpImages(dir string) (string, error) { return u.dumpImages(dir) } func (i *Image) clear() { i.Fill(0, 0, 0, 0, image.Rect(0, 0, i.width, i.height)) } func (i *Image) Fill(r, g, b, a float32, region image.Rectangle) { if len(i.tmpVerticesForFill) < 4*graphics.VertexFloatCount { i.tmpVerticesForFill = make([]float32, 4*graphics.VertexFloatCount) } // i.tmpVerticesForFill can be reused as this is sent to DrawTriangles immediately. graphics.QuadVertices( i.tmpVerticesForFill, 1, 1, float32(i.ui.whiteImage.width-1), float32(i.ui.whiteImage.height-1), float32(i.width), 0, 0, float32(i.height), 0, 0, r, g, b, a) is := graphics.QuadIndices() srcs := [graphics.ShaderImageCount]*Image{i.ui.whiteImage} blend := graphicsdriver.BlendCopy // If possible, use BlendSourceOver to encourage batching (#2817). if a == 1 && i.lastBlend == graphicsdriver.BlendSourceOver { blend = graphicsdriver.BlendSourceOver } // i.lastBlend is updated in DrawTriangles. i.DrawTriangles(srcs, i.tmpVerticesForFill, is, blend, region, [graphics.ShaderImageCount]image.Rectangle{}, NearestFilterShader, nil, graphicsdriver.FillAll, true, false) } type bigOffscreenImage struct { ui *UserInterface orig *Image imageType atlas.ImageType image *Image region image.Rectangle blend graphicsdriver.Blend dirty bool tmpVerticesForFlushing []float32 tmpVerticesForCopying []float32 } func (u *UserInterface) newBigOffscreenImage(orig *Image, imageType atlas.ImageType) *bigOffscreenImage { return &bigOffscreenImage{ ui: u, orig: orig, imageType: imageType, } } func (i *bigOffscreenImage) deallocate() { if i.image != nil { i.image.Deallocate() } i.dirty = false } func (i *bigOffscreenImage) drawTriangles(srcs [graphics.ShaderImageCount]*Image, vertices []float32, indices []uint32, blend graphicsdriver.Blend, dstRegion image.Rectangle, srcRegions [graphics.ShaderImageCount]image.Rectangle, shader *Shader, uniforms []uint32, fillRule graphicsdriver.FillRule, canSkipMipmap bool) { if i.blend != blend { i.flush() } i.blend = blend // If the new region doesn't match with the current region, remove the buffer image and recreate it later. if r := i.requiredRegion(vertices); i.region != r { i.flush() i.image = nil i.region = r } if i.region.Empty() { return } if i.image == nil { i.image = i.ui.NewImage(i.region.Dx()*bigOffscreenScale, i.region.Dy()*bigOffscreenScale, i.imageType) } // Copy the current rendering result to get the correct blending result. if blend != graphicsdriver.BlendSourceOver && !i.dirty { srcs := [graphics.ShaderImageCount]*Image{i.orig} if len(i.tmpVerticesForCopying) < 4*graphics.VertexFloatCount { i.tmpVerticesForCopying = make([]float32, 4*graphics.VertexFloatCount) } // i.tmpVerticesForCopying can be reused as this is sent to DrawTriangles immediately. graphics.QuadVertices( i.tmpVerticesForCopying, float32(i.region.Min.X), float32(i.region.Min.Y), float32(i.region.Max.X), float32(i.region.Max.Y), bigOffscreenScale, 0, 0, bigOffscreenScale, 0, 0, 1, 1, 1, 1) is := graphics.QuadIndices() dstRegion := image.Rect(0, 0, i.region.Dx()*bigOffscreenScale, i.region.Dy()*bigOffscreenScale) i.image.DrawTriangles(srcs, i.tmpVerticesForCopying, is, graphicsdriver.BlendCopy, dstRegion, [graphics.ShaderImageCount]image.Rectangle{}, NearestFilterShader, nil, graphicsdriver.FillAll, true, false) } for idx := 0; idx < len(vertices); idx += graphics.VertexFloatCount { vertices[idx] = (vertices[idx] - float32(i.region.Min.X)) * bigOffscreenScale vertices[idx+1] = (vertices[idx+1] - float32(i.region.Min.Y)) * bigOffscreenScale } // Translate to i.region coordinate space, and clamp against region size. dstRegion = dstRegion.Sub(i.region.Min) dstRegion = dstRegion.Intersect(image.Rect(0, 0, i.region.Dx(), i.region.Dy())) dstRegion.Min.X *= bigOffscreenScale dstRegion.Min.Y *= bigOffscreenScale dstRegion.Max.X *= bigOffscreenScale dstRegion.Max.Y *= bigOffscreenScale i.image.DrawTriangles(srcs, vertices, indices, blend, dstRegion, srcRegions, shader, uniforms, fillRule, canSkipMipmap, false) i.dirty = true } func (i *bigOffscreenImage) flush() { if i.image == nil { return } if !i.dirty { return } // Mark the offscreen clean earlier to avoid recursive calls. i.dirty = false srcs := [graphics.ShaderImageCount]*Image{i.image} if len(i.tmpVerticesForFlushing) < 4*graphics.VertexFloatCount { i.tmpVerticesForFlushing = make([]float32, 4*graphics.VertexFloatCount) } // i.tmpVerticesForFlushing can be reused as this is sent to DrawTriangles in this function. graphics.QuadVertices( i.tmpVerticesForFlushing, 0, 0, float32(i.region.Dx()*bigOffscreenScale), float32(i.region.Dy()*bigOffscreenScale), 1.0/bigOffscreenScale, 0, 0, 1.0/bigOffscreenScale, float32(i.region.Min.X), float32(i.region.Min.Y), 1, 1, 1, 1) is := graphics.QuadIndices() dstRegion := i.region blend := graphicsdriver.BlendSourceOver if i.blend != graphicsdriver.BlendSourceOver { blend = graphicsdriver.BlendCopy } i.orig.DrawTriangles(srcs, i.tmpVerticesForFlushing, is, blend, dstRegion, [graphics.ShaderImageCount]image.Rectangle{}, LinearFilterShader, nil, graphicsdriver.FillAll, true, false) i.image.clear() i.dirty = false } func (i *bigOffscreenImage) requiredRegion(vertices []float32) image.Rectangle { minX := float32(i.orig.width) minY := float32(i.orig.height) maxX := float32(0) maxY := float32(0) for i := 0; i < len(vertices); i += graphics.VertexFloatCount { dstX := vertices[i] dstY := vertices[i+1] if minX > floor(dstX)-1 { minX = floor(dstX) - 1 } if minY > floor(dstY)-1 { minY = floor(dstY) - 1 } if maxX < ceil(dstX)+1 { maxX = ceil(dstX) + 1 } if maxY < ceil(dstY)+1 { maxY = ceil(dstY) + 1 } } // Adjust the granularity of the rectangle. r := image.Rect( roundDown16(int(minX)), roundDown16(int(minY)), roundUp16(int(maxX)), roundUp16(int(maxY))) r = r.Intersect(image.Rect(0, 0, i.orig.width, i.orig.height)) // TODO: Is this check required? if r.Dx() < 0 || r.Dy() < 0 { return i.region } return r.Union(i.region) } func floor(x float32) float32 { return float32(math.Floor(float64(x))) } func ceil(x float32) float32 { return float32(math.Ceil(float64(x))) } func roundDown16(x int) int { return x & ^(0xf) } func roundUp16(x int) int { return ((x - 1) & ^(0xf)) + 0x10 }