// Copyright 2015 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package audio provides audio players. // // The stream format must be 16-bit little endian and 2 channels. The format is as follows: // // [data] = [sample 1] [sample 2] [sample 3] ... // [sample *] = [channel 1] ... // [channel *] = [byte 1] [byte 2] ... // // An audio context (audio.Context object) has a sample rate you can specify and all streams you want to play must have the same // sample rate. However, decoders in e.g. audio/mp3 package adjust sample rate automatically, // and you don't have to care about it as long as you use those decoders. // // An audio context can generate 'players' (audio.Player objects), // and you can play sound by calling Play function of players. // When multiple players play, mixing is automatically done. // Note that too many players may cause distortion. // // For the simplest example to play sound, see wav package in the examples. package audio import ( "bytes" "errors" "fmt" "io" "runtime" "sync" "time" "github.com/hajimehoshi/ebiten/v2/audio/internal/convert" "github.com/hajimehoshi/ebiten/v2/internal/hooks" ) const ( channelCount = 2 bitDepthInBytes = 2 bytesPerSample = bitDepthInBytes * channelCount ) // A Context represents a current state of audio. // // At most one Context object can exist in one process. // This means only one constant sample rate is valid in your one application. // // For a typical usage example, see examples/wav/main.go. type Context struct { playerFactory *playerFactory // inited represents whether the audio device is initialized and available or not. // On Android, audio loop cannot be started unless JVM is accessible. After updating one frame, JVM should exist. inited chan struct{} initedOnce sync.Once sampleRate int err error ready bool readyOnce sync.Once players map[*playerImpl]struct{} m sync.Mutex semaphore chan struct{} } var ( theContext *Context theContextLock sync.Mutex ) // NewContext creates a new audio context with the given sample rate. // // sampleRate specifies the number of samples that should be played during one second. // Usual numbers are 44100 or 48000. One context has only one sample rate. You cannot play multiple audio // sources with different sample rates at the same time. // // NewContext panics when an audio context is already created. func NewContext(sampleRate int) *Context { theContextLock.Lock() defer theContextLock.Unlock() if theContext != nil { panic("audio: context is already created") } c := &Context{ sampleRate: sampleRate, playerFactory: newPlayerFactory(sampleRate), players: map[*playerImpl]struct{}{}, inited: make(chan struct{}), semaphore: make(chan struct{}, 1), } theContext = c h := getHook() h.OnSuspendAudio(func() error { c.semaphore <- struct{}{} if err := c.playerFactory.suspend(); err != nil { return err } return nil }) h.OnResumeAudio(func() error { <-c.semaphore if err := c.playerFactory.resume(); err != nil { return err } return nil }) h.AppendHookOnBeforeUpdate(func() error { c.initedOnce.Do(func() { close(c.inited) }) var err error theContextLock.Lock() if theContext != nil { err = theContext.error() } theContextLock.Unlock() if err != nil { return err } if err := c.gcPlayers(); err != nil { return err } return nil }) return c } // CurrentContext returns the current context or nil if there is no context. func CurrentContext() *Context { theContextLock.Lock() c := theContext theContextLock.Unlock() return c } func (c *Context) setError(err error) { // TODO: What if c.err already exists? c.m.Lock() c.err = err c.m.Unlock() } func (c *Context) error() error { c.m.Lock() defer c.m.Unlock() if c.err != nil { return c.err } return c.playerFactory.error() } func (c *Context) setReady() { c.m.Lock() c.ready = true c.m.Unlock() } func (c *Context) addPlayer(p *playerImpl) { c.m.Lock() defer c.m.Unlock() c.players[p] = struct{}{} // Check the source duplication srcs := map[io.Reader]struct{}{} for p := range c.players { if _, ok := srcs[p.source()]; ok { c.err = errors.New("audio: a same source is used by multiple Player") return } srcs[p.source()] = struct{}{} } } func (c *Context) removePlayer(p *playerImpl) { c.m.Lock() delete(c.players, p) c.m.Unlock() } func (c *Context) gcPlayers() error { // A Context must not call playerImpl's functions with a lock, or this causes a deadlock (#2737). // Copy the playerImpls and iterate them without a lock. var players []*playerImpl c.m.Lock() players = make([]*playerImpl, 0, len(c.players)) for p := range c.players { players = append(players, p) } c.m.Unlock() var playersToRemove []*playerImpl // Now reader players cannot call removePlayers from themselves in the current implementation. // Underlying playering can be the pause state after fishing its playing, // but there is no way to notify this to players so far. // Instead, let's check the states proactively every frame. for _, p := range players { if err := p.Err(); err != nil { return err } if !p.IsPlaying() { playersToRemove = append(playersToRemove, p) } } c.m.Lock() for _, p := range playersToRemove { delete(c.players, p) } c.m.Unlock() return nil } // IsReady returns a boolean value indicating whether the audio is ready or not. // // On some browsers, user interaction like click or pressing keys is required to start audio. func (c *Context) IsReady() bool { c.m.Lock() defer c.m.Unlock() r := c.ready if r { return r } if len(c.players) != 0 { return r } c.readyOnce.Do(func() { // Create another goroutine since (*Player).Play can lock the context's mutex. // TODO: Is this needed for reader players? go func() { // The audio context is never ready unless there is a player. This is // problematic when a user tries to play audio after the context is ready. // Play a dummy player to avoid the blocking (#969). // Use a long enough buffer so that writing doesn't finish immediately (#970). p := NewPlayerFromBytes(c, make([]byte, bufferSize()*2)) p.Play() }() }) return r } // SampleRate returns the sample rate. func (c *Context) SampleRate() int { return c.sampleRate } func (c *Context) acquireSemaphore() { c.semaphore <- struct{}{} } func (c *Context) releaseSemaphore() { <-c.semaphore } func (c *Context) waitUntilInited() { <-c.inited } // Player is an audio player which has one stream. // // Even when all references to a Player object is gone, // the object is not GCed until the player finishes playing. // This means that if a Player plays an infinite stream, // the object is never GCed unless Close is called. type Player struct { p *playerImpl } // NewPlayer creates a new player with the given stream. // // src's format must be linear PCM (signed 16bits little endian, 2 channel stereo) // without a header (e.g. RIFF header). // The sample rate must be same as that of the audio context. // // The player is seekable when src is io.Seeker. // Attempt to seek the player that is not io.Seeker causes panic. // // Note that the given src can't be shared with other Player objects. // // NewPlayer tries to call Seek of src to get the current position. // NewPlayer returns error when the Seek returns error. // // A Player doesn't close src even if src implements io.Closer. // Closing the source is src owner's responsibility. func (c *Context) NewPlayer(src io.Reader) (*Player, error) { pi, err := c.playerFactory.newPlayer(c, src) if err != nil { return nil, err } p := &Player{pi} runtime.SetFinalizer(p, (*Player).finalize) return p, nil } // NewPlayer creates a new player with the given stream. // // Deprecated: as of v2.2. Use (*Context).NewPlayer instead. func NewPlayer(context *Context, src io.Reader) (*Player, error) { return context.NewPlayer(src) } // NewPlayerFromBytes creates a new player with the given bytes. // // As opposed to NewPlayer, you don't have to care if src is already used by another player or not. // src can be shared by multiple players. // // The format of src should be same as noted at NewPlayer. func (c *Context) NewPlayerFromBytes(src []byte) *Player { p, err := c.NewPlayer(bytes.NewReader(src)) if err != nil { // Errors should never happen. panic(fmt.Sprintf("audio: %v at NewPlayerFromBytes", err)) } return p } // NewPlayerFromBytes creates a new player with the given bytes. // // Deprecated: as of v2.2. Use (*Context).NewPlayerFromBytes instead. func NewPlayerFromBytes(context *Context, src []byte) *Player { return context.NewPlayerFromBytes(src) } func (p *Player) finalize() { runtime.SetFinalizer(p, nil) if !p.IsPlaying() { _ = p.Close() } } // Close closes the stream. // // When Close is called, the stream owned by the player is NOT closed, // even if the stream implements io.Closer. // // Close returns error when the player is already closed. func (p *Player) Close() error { return p.p.Close() } // Play plays the stream. func (p *Player) Play() { p.p.Play() } // IsPlaying returns boolean indicating whether the player is playing. func (p *Player) IsPlaying() bool { return p.p.IsPlaying() } // Rewind rewinds the current position to the start. // // The passed source to NewPlayer must be io.Seeker, or Rewind panics. // // Rewind returns error when seeking the source stream returns error. func (p *Player) Rewind() error { return p.p.Rewind() } // Seek seeks the position with the given offset. // // The passed source to NewPlayer must be io.Seeker, or Seek panics. // // Seek returns error when seeking the source stream returns error. func (p *Player) Seek(offset time.Duration) error { return p.p.Seek(offset) } // Pause pauses the playing. func (p *Player) Pause() { p.p.Pause() } // Current returns the current position in time. // // As long as the player continues to play, Current's returning value is increased monotonically, // even though the source stream loops and its position goes back. func (p *Player) Current() time.Duration { return p.p.Current() } // Volume returns the current volume of this player [0-1]. func (p *Player) Volume() float64 { return p.p.Volume() } // SetVolume sets the volume of this player. // volume must be in between 0 and 1. SetVolume panics otherwise. func (p *Player) SetVolume(volume float64) { p.p.SetVolume(volume) } // SetBufferSize adjusts the buffer size of the player. // If 0 is specified, the default buffer size is used. // A small buffer size is useful if you want to play a real-time PCM for example. // Note that the audio quality might be affected if you modify the buffer size. func (p *Player) SetBufferSize(bufferSize time.Duration) { p.p.SetBufferSize(bufferSize) } type hook interface { OnSuspendAudio(f func() error) OnResumeAudio(f func() error) AppendHookOnBeforeUpdate(f func() error) } var hookForTesting hook func getHook() hook { if hookForTesting != nil { return hookForTesting } return &hookImpl{} } type hookImpl struct{} func (h *hookImpl) OnSuspendAudio(f func() error) { hooks.OnSuspendAudio(f) } func (h *hookImpl) OnResumeAudio(f func() error) { hooks.OnResumeAudio(f) } func (h *hookImpl) AppendHookOnBeforeUpdate(f func() error) { hooks.AppendHookOnBeforeUpdate(f) } // Resample converts the sample rate of the given stream. // size is the length of the source stream in bytes. // from is the original sample rate. // to is the target sample rate. // // If the original sample rate equals to the new one, Resample returns source as it is. func Resample(source io.ReadSeeker, size int64, from, to int) io.ReadSeeker { if from == to { return source } return convert.NewResampling(source, size, from, to) }