// Copyright 2014 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package affine import ( "image/color" "math" ) // ColorMDim is a dimension of a ColorM. const ColorMDim = 5 var ( colorMIdentityBody = []float32{ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, } colorMIdentityTranslate = []float32{ 0, 0, 0, 0, } ) // A ColorM represents a matrix to transform coloring when rendering an image. // // A ColorM is applied to the source alpha color // while an Image's pixels' format is alpha premultiplied. // Before applying a matrix, a color is un-multiplied, and after applying the matrix, // the color is multiplied again. // // The nil and initial value is identity. type ColorM struct { // When elements is nil, this matrix is identity. // elements are immutable and a new array must be created when updating. body []float32 translate []float32 } func clamp(x float32) float32 { if x > 1 { return 1 } if x < 0 { return 0 } return x } func (c *ColorM) isInited() bool { return c != nil && (c.body != nil || c.translate != nil) } func (c *ColorM) Apply(clr color.Color) color.Color { if !c.isInited() { return clr } r, g, b, a := clr.RGBA() rf, gf, bf, af := float32(0.0), float32(0.0), float32(0.0), float32(0.0) // Unmultiply alpha if a > 0 { rf = float32(r) / float32(a) gf = float32(g) / float32(a) bf = float32(b) / float32(a) af = float32(a) / 0xffff } eb := c.body if eb == nil { eb = colorMIdentityBody } et := c.translate if et == nil { et = colorMIdentityTranslate } rf2 := eb[0]*rf + eb[4]*gf + eb[8]*bf + eb[12]*af + et[0] gf2 := eb[1]*rf + eb[5]*gf + eb[9]*bf + eb[13]*af + et[1] bf2 := eb[2]*rf + eb[6]*gf + eb[10]*bf + eb[14]*af + et[2] af2 := eb[3]*rf + eb[7]*gf + eb[11]*bf + eb[15]*af + et[3] rf2 = clamp(rf2) gf2 = clamp(gf2) bf2 = clamp(bf2) af2 = clamp(af2) return color.NRGBA64{ R: uint16(rf2 * 0xffff), G: uint16(gf2 * 0xffff), B: uint16(bf2 * 0xffff), A: uint16(af2 * 0xffff), } } func (c *ColorM) UnsafeElements() ([]float32, []float32) { if !c.isInited() { return colorMIdentityBody, colorMIdentityTranslate } eb := c.body if eb == nil { eb = colorMIdentityBody } et := c.translate if et == nil { et = colorMIdentityTranslate } return eb, et } // SetElement sets an element at (i, j). func (c *ColorM) SetElement(i, j int, element float32) *ColorM { newC := &ColorM{ body: make([]float32, 16), translate: make([]float32, 4), } copy(newC.body, colorMIdentityBody) copy(newC.translate, colorMIdentityTranslate) if c.isInited() { if c.body != nil { copy(newC.body, c.body) } if c.translate != nil { copy(newC.translate, c.translate) } } if j < (ColorMDim - 1) { newC.body[i+j*(ColorMDim-1)] = element } else { newC.translate[i] = element } return newC } // Concat multiplies a color matrix with the other color matrix. // This is same as muptiplying the matrix other and the matrix c in this order. func (c *ColorM) Concat(other *ColorM) *ColorM { if !c.isInited() { return other } if !other.isInited() { return c } lhsb := colorMIdentityBody lhst := colorMIdentityTranslate rhsb := colorMIdentityBody rhst := colorMIdentityTranslate if other.isInited() { if other.body != nil { lhsb = other.body } if other.translate != nil { lhst = other.translate } } if c.isInited() { if c.body != nil { rhsb = c.body } if c.translate != nil { rhst = c.translate } } return &ColorM{ // TODO: This is a temporary hack to calculate multiply of transposed matrices. // Fix mulSquare implmentation and swap the arguments. body: mulSquare(rhsb, lhsb, ColorMDim-1), translate: []float32{ lhsb[0]*rhst[0] + lhsb[4]*rhst[1] + lhsb[8]*rhst[2] + lhsb[12]*rhst[3] + lhst[0], lhsb[1]*rhst[0] + lhsb[5]*rhst[1] + lhsb[9]*rhst[2] + lhsb[13]*rhst[3] + lhst[1], lhsb[2]*rhst[0] + lhsb[6]*rhst[1] + lhsb[10]*rhst[2] + lhsb[14]*rhst[3] + lhst[2], lhsb[3]*rhst[0] + lhsb[7]*rhst[1] + lhsb[11]*rhst[2] + lhsb[15]*rhst[3] + lhst[3], }, } } // Add is deprecated. func (c *ColorM) Add(other *ColorM) *ColorM { lhsb := colorMIdentityBody lhst := colorMIdentityTranslate rhsb := colorMIdentityBody rhst := colorMIdentityTranslate if other.isInited() { if other.body != nil { lhsb = other.body } if other.translate != nil { lhst = other.translate } } if c.isInited() { if c.body != nil { rhsb = c.body } if c.translate != nil { rhst = c.translate } } newC := &ColorM{ body: make([]float32, 16), translate: make([]float32, 4), } for i := range lhsb { newC.body[i] = lhsb[i] + rhsb[i] } for i := range lhst { newC.translate[i] = lhst[i] + rhst[i] } return newC } // Scale scales the matrix by (r, g, b, a). func (c *ColorM) Scale(r, g, b, a float32) *ColorM { if !c.isInited() { return &ColorM{ body: []float32{ r, 0, 0, 0, 0, g, 0, 0, 0, 0, b, 0, 0, 0, 0, a, }, } } eb := make([]float32, len(colorMIdentityBody)) if c.body != nil { copy(eb, c.body) for i := 0; i < ColorMDim-1; i++ { eb[i*(ColorMDim-1)] *= r eb[i*(ColorMDim-1)+1] *= g eb[i*(ColorMDim-1)+2] *= b eb[i*(ColorMDim-1)+3] *= a } } else { eb[0] = r eb[5] = g eb[10] = b eb[15] = a } et := make([]float32, len(colorMIdentityTranslate)) if c.translate != nil { et[0] = c.translate[0] * r et[1] = c.translate[1] * g et[2] = c.translate[2] * b et[3] = c.translate[3] * a } return &ColorM{ body: eb, translate: et, } } // Translate translates the matrix by (r, g, b, a). func (c *ColorM) Translate(r, g, b, a float32) *ColorM { if !c.isInited() { return &ColorM{ translate: []float32{r, g, b, a}, } } es := make([]float32, len(colorMIdentityTranslate)) if c.translate != nil { copy(es, c.translate) } es[0] += r es[1] += g es[2] += b es[3] += a return &ColorM{ body: c.body, translate: es, } } var ( // The YCbCr value ranges are: // Y: [ 0 - 1 ] // Cb: [-0.5 - 0.5] // Cr: [-0.5 - 0.5] rgbToYCbCr = &ColorM{ body: []float32{ 0.2990, -0.1687, 0.5000, 0, 0.5870, -0.3313, -0.4187, 0, 0.1140, 0.5000, -0.0813, 0, 0, 0, 0, 1, }, } yCbCrToRgb = &ColorM{ body: []float32{ 1, 1, 1, 0, 0, -0.34414, 1.77200, 0, 1.40200, -0.71414, 0, 0, 0, 0, 0, 1, }, } ) // ChangeHSV changes HSV (Hue-Saturation-Value) elements. // hueTheta is a radian value to ratate hue. // saturationScale is a value to scale saturation. // valueScale is a value to scale value (a.k.a. brightness). // // This conversion uses RGB to/from YCrCb conversion. func (c *ColorM) ChangeHSV(hueTheta float64, saturationScale float32, valueScale float32) *ColorM { sin, cos := math.Sincos(hueTheta) s32, c32 := float32(sin), float32(cos) c = c.Concat(rgbToYCbCr) c = c.Concat(&ColorM{ body: []float32{ 1, 0, 0, 0, 0, c32, s32, 0, 0, -s32, c32, 0, 0, 0, 0, 1, }, }) s := saturationScale v := valueScale c = c.Scale(v, s*v, s*v, 1) c = c.Concat(yCbCrToRgb) return c }