// Copyright 2018 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package mipmap import ( "fmt" "image/color" "math" "github.com/hajimehoshi/ebiten/v2/internal/affine" "github.com/hajimehoshi/ebiten/v2/internal/buffered" "github.com/hajimehoshi/ebiten/v2/internal/driver" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/shaderir" ) var graphicsDriver driver.Graphics func SetGraphicsDriver(graphics driver.Graphics) { graphicsDriver = graphics } func BeginFrame() error { return buffered.BeginFrame() } func EndFrame() error { return buffered.EndFrame() } // Mipmap is a set of buffered.Image sorted by the order of mipmap level. // The level 0 image is a regular image and higher-level images are used for mipmap. type Mipmap struct { width int height int volatile bool orig *buffered.Image imgs map[int]*buffered.Image } func New(width, height int) *Mipmap { return &Mipmap{ width: width, height: height, orig: buffered.NewImage(width, height), imgs: map[int]*buffered.Image{}, } } func NewScreenFramebufferMipmap(width, height int) *Mipmap { return &Mipmap{ width: width, height: height, orig: buffered.NewScreenFramebufferImage(width, height), imgs: map[int]*buffered.Image{}, } } func (m *Mipmap) SetVolatile(volatile bool) { m.volatile = volatile if m.volatile { m.disposeMipmaps() } m.orig.SetVolatile(volatile) } func (m *Mipmap) Dump(name string, blackbg bool) error { return m.orig.Dump(name, blackbg) } func (m *Mipmap) Fill(clr color.RGBA) { m.orig.Fill(clr) m.disposeMipmaps() } func (m *Mipmap) ReplacePixels(pix []byte, x, y, width, height int) error { if err := m.orig.ReplacePixels(pix, x, y, width, height); err != nil { return err } m.disposeMipmaps() return nil } func (m *Mipmap) Pixels(x, y, width, height int) ([]byte, error) { return m.orig.Pixels(x, y, width, height) } func (m *Mipmap) DrawTriangles(srcs [graphics.ShaderImageNum]*Mipmap, vertices []float32, indices []uint16, colorm *affine.ColorM, mode driver.CompositeMode, filter driver.Filter, address driver.Address, sourceRegion driver.Region, subimageOffsets [graphics.ShaderImageNum - 1][2]float32, shader *Shader, uniforms []interface{}, canSkipMipmap bool) { if len(indices) == 0 { return } level := 0 // TODO: Do we need to check all the sources' states of being volatile? if !canSkipMipmap && srcs[0] != nil && !srcs[0].volatile && filter != driver.FilterScreen { level = math.MaxInt32 for i := 0; i < len(indices)/3; i++ { const n = graphics.VertexFloatNum dx0 := vertices[n*indices[3*i]+0] dy0 := vertices[n*indices[3*i]+1] sx0 := vertices[n*indices[3*i]+2] sy0 := vertices[n*indices[3*i]+3] dx1 := vertices[n*indices[3*i+1]+0] dy1 := vertices[n*indices[3*i+1]+1] sx1 := vertices[n*indices[3*i+1]+2] sy1 := vertices[n*indices[3*i+1]+3] dx2 := vertices[n*indices[3*i+2]+0] dy2 := vertices[n*indices[3*i+2]+1] sx2 := vertices[n*indices[3*i+2]+2] sy2 := vertices[n*indices[3*i+2]+3] if l := mipmapLevelFromDistance(dx0, dy0, dx1, dy1, sx0, sy0, sx1, sy1, filter); level > l { level = l } if l := mipmapLevelFromDistance(dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2, filter); level > l { level = l } if l := mipmapLevelFromDistance(dx2, dy2, dx0, dy0, sx2, sy2, sx0, sy0, filter); level > l { level = l } } if level == math.MaxInt32 { panic("mipmap: level must be calculated at least once but not") } } if colorm != nil && colorm.ScaleOnly() { body, _ := colorm.UnsafeElements() cr := body[0] cg := body[5] cb := body[10] ca := body[15] colorm = nil const n = graphics.VertexFloatNum for i := 0; i < len(vertices)/n; i++ { vertices[i*n+4] *= cr vertices[i*n+5] *= cg vertices[i*n+6] *= cb vertices[i*n+7] *= ca } } var s *buffered.Shader if shader != nil { s = shader.shader } var imgs [graphics.ShaderImageNum]*buffered.Image for i, src := range srcs { if src == nil { continue } if level != 0 { if img := src.level(level); img != nil { const n = graphics.VertexFloatNum s := float32(pow2(level)) for i := 0; i < len(vertices)/n; i++ { vertices[i*n+2] /= s vertices[i*n+3] /= s } imgs[i] = img continue } } imgs[i] = src.orig } m.orig.DrawTriangles(imgs, vertices, indices, colorm, mode, filter, address, sourceRegion, subimageOffsets, s, uniforms) m.disposeMipmaps() } func (m *Mipmap) level(level int) *buffered.Image { if level == 0 { panic("ebiten: level must be non-zero at level") } if m.volatile { panic("ebiten: mipmap images for a volatile image is not implemented yet") } if img, ok := m.imgs[level]; ok { return img } var src *buffered.Image var vs []float32 var filter driver.Filter switch { case level == 1: src = m.orig vs = graphics.QuadVertices(0, 0, float32(m.width), float32(m.height), 0.5, 0, 0, 0.5, 0, 0, 1, 1, 1, 1, false) filter = driver.FilterLinear case level > 1: src = m.level(level - 1) if src == nil { m.imgs[level] = nil return nil } w := sizeForLevel(m.width, level-1) h := sizeForLevel(m.height, level-1) vs = graphics.QuadVertices(0, 0, float32(w), float32(h), 0.5, 0, 0, 0.5, 0, 0, 1, 1, 1, 1, false) filter = driver.FilterLinear case level == -1: src = m.orig vs = graphics.QuadVertices(0, 0, float32(m.width), float32(m.height), 2, 0, 0, 2, 0, 0, 1, 1, 1, 1, false) filter = driver.FilterNearest case level < -1: src = m.level(level + 1) if src == nil { m.imgs[level] = nil return nil } w := sizeForLevel(m.width, level-1) h := sizeForLevel(m.height, level-1) vs = graphics.QuadVertices(0, 0, float32(w), float32(h), 2, 0, 0, 2, 0, 0, 1, 1, 1, 1, false) filter = driver.FilterNearest default: panic(fmt.Sprintf("ebiten: invalid level: %d", level)) } is := graphics.QuadIndices() w2 := sizeForLevel(m.width, level-1) h2 := sizeForLevel(m.height, level-1) if w2 == 0 || h2 == 0 { m.imgs[level] = nil return nil } s := buffered.NewImage(w2, h2) s.SetVolatile(m.volatile) s.DrawTriangles([graphics.ShaderImageNum]*buffered.Image{src}, vs, is, nil, driver.CompositeModeCopy, filter, driver.AddressUnsafe, driver.Region{}, [graphics.ShaderImageNum - 1][2]float32{}, nil, nil) m.imgs[level] = s return m.imgs[level] } func sizeForLevel(x int, level int) int { if level > 0 { for i := 0; i < level; i++ { x /= 2 if x == 0 { return 0 } } } else { for i := 0; i < -level; i++ { x *= 2 } } return x } func (m *Mipmap) MarkDisposed() { m.disposeMipmaps() m.orig.MarkDisposed() m.orig = nil } func (m *Mipmap) disposeMipmaps() { for _, img := range m.imgs { img.MarkDisposed() } for k := range m.imgs { delete(m.imgs, k) } } // mipmapLevel returns an appropriate mipmap level for the given distance. func mipmapLevelFromDistance(dx0, dy0, dx1, dy1, sx0, sy0, sx1, sy1 float32, filter driver.Filter) int { if filter == driver.FilterScreen { return 0 } d := (dx1-dx0)*(dx1-dx0) + (dy1-dy0)*(dy1-dy0) s := (sx1-sx0)*(sx1-sx0) + (sy1-sy0)*(sy1-sy0) if s == 0 { return 0 } scale := d / s // Use 'negative' mipmap to render edges correctly (#611, #907). // It looks like 128 is the enlargement factor that causes edge missings to pass the test TestImageStretch, // but we use 32 here for environments where the float precision is low (#1044, #1270). var tooBigScale float32 = 32 if scale >= tooBigScale*tooBigScale { // If the filter is not nearest, the target needs to be rendered with graduation. Don't use mipmaps. if filter != driver.FilterNearest { return 0 } const mipmapMaxSize = 1024 w, h := sx1-sx0, sy1-sy0 if w >= mipmapMaxSize || h >= mipmapMaxSize { return 0 } level := 0 for scale >= tooBigScale*tooBigScale { level-- scale /= 4 w *= 2 h *= 2 if w >= mipmapMaxSize || h >= mipmapMaxSize { break } } // If tooBigScale is 64, level -6 means that the maximum scale is 64 * 2^6 = 4096. This should be // enough. if level < -6 { level = -6 } return level } if filter != driver.FilterLinear { return 0 } level := 0 for scale < 0.25 { level++ scale *= 4 } if level > 0 { // If the image can be scaled into 0 size, adjust the level. (#839) w, h := int(sx1-sx0), int(sy1-sy0) for level >= 0 { s := 1 << uint(level) if (w > 0 && w/s == 0) || (h > 0 && h/s == 0) { level-- continue } break } if level < 0 { // As the render source is too small, nothing is rendered. return 0 } } if level > 6 { level = 6 } return level } func pow2(power int) float32 { if power >= 0 { x := 1 return float32(x << uint(power)) } x := float32(1) for i := 0; i < -power; i++ { x /= 2 } return x } type Shader struct { shader *buffered.Shader } func NewShader(program *shaderir.Program) *Shader { return &Shader{ shader: buffered.NewShader(program), } } func (s *Shader) MarkDisposed() { s.shader.MarkDisposed() s.shader = nil }