// Copyright 2019 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package vector provides functions for vector graphics rendering. // // This package is under experiments and the API might be changed with breaking backward compatibility. package vector import ( "github.com/hajimehoshi/ebiten/v2" ) type point struct { x float32 y float32 } // Path represents a collection of path segments. type Path struct { segs [][]point cur point } // MoveTo skips the current position of the path to the given position (x, y) without adding any strokes. func (p *Path) MoveTo(x, y float32) { p.cur = point{x: x, y: y} p.segs = append(p.segs, []point{p.cur}) } // LineTo adds a line segument to the path, which starts from the current position and ends to the given position (x, y). // // LineTo updates the current position to (x, y). func (p *Path) LineTo(x, y float32) { if len(p.segs) == 0 { p.segs = append(p.segs, []point{p.cur}) } p.segs[len(p.segs)-1] = append(p.segs[len(p.segs)-1], point{x: x, y: y}) p.cur = point{x: x, y: y} } // QuadTo adds a quadratic Bézier curve to the path. func (p *Path) QuadTo(cpx, cpy, x, y float32) { p.quadTo(cpx, cpy, x, y, 0) } // isPointCloseToSegment detects the distance between a segment (x0, y0)-(x1, y1) and a point (x, y) is less than allow. func isPointCloseToSegment(x, y, x0, y0, x1, y1 float32, allow float32) bool { // Line passing through (x0, y0) and (x1, y1) in the form of ax + by + c = 0 a := y1 - y0 b := -(x1 - x0) c := (x1-x0)*y0 - (y1-y0)*x0 // The distance between a line ax+by+c=0 and (x0, y0) is // |ax0 + by0 + c| / √(a² + b²) return allow*allow*(a*a+b*b) > (a*x+b*y+c)*(a*x+b*y+c) } func (p *Path) quadTo(x1, y1, x2, y2 float32, level int) { if level > 10 { return } x0 := p.cur.x y0 := p.cur.y if isPointCloseToSegment(x1, y1, x0, y0, x2, y2, 1) { p.LineTo(x2, y2) return } x01 := (x0 + x1) / 2 y01 := (y0 + y1) / 2 x12 := (x1 + x2) / 2 y12 := (y1 + y2) / 2 x012 := (x01 + x12) / 2 y012 := (y01 + y12) / 2 p.quadTo(x01, y01, x012, y012, level+1) p.quadTo(x12, y12, x2, y2, level+1) } // CubicTo adds a cubic Bézier curve to the path. func (p *Path) CubicTo(cp0x, cp0y, cp1x, cp1y, x, y float32) { p.cubicTo(cp0x, cp0y, cp1x, cp1y, x, y, 0) } func (p *Path) cubicTo(x1, y1, x2, y2, x3, y3 float32, level int) { if level > 10 { return } x0 := p.cur.x y0 := p.cur.y if isPointCloseToSegment(x1, y1, x0, y0, x3, y3, 1) && isPointCloseToSegment(x2, y2, x0, y0, x3, y3, 1) { p.LineTo(x3, y3) return } x01 := (x0 + x1) / 2 y01 := (y0 + y1) / 2 x12 := (x1 + x2) / 2 y12 := (y1 + y2) / 2 x23 := (x2 + x3) / 2 y23 := (y2 + y3) / 2 x012 := (x01 + x12) / 2 y012 := (y01 + y12) / 2 x123 := (x12 + x23) / 2 y123 := (y12 + y23) / 2 x0123 := (x012 + x123) / 2 y0123 := (y012 + y123) / 2 p.cubicTo(x01, y01, x012, y012, x0123, y0123, level+1) p.cubicTo(x123, y123, x23, y23, x3, y3, level+1) } // AppendVerticesAndIndices appends vertices and indices for this path and returns them. // AppendVerticesAndIndices works in a similar way to the built-in append function. // If the arguments are nils, AppendVerticesAndIndices returns new slices. // // The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1. // // The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with EvenOdd option // in order to render a complex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon. func (p *Path) AppendVerticesAndIndices(vertices []ebiten.Vertex, indices []uint16) ([]ebiten.Vertex, []uint16) { // TODO: Add tests. var base uint16 for _, seg := range p.segs { if len(seg) < 3 { continue } for i, pt := range seg { vertices = append(vertices, ebiten.Vertex{ DstX: pt.x, DstY: pt.y, SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }) if i < 2 { continue } indices = append(indices, base, base+uint16(i-1), base+uint16(i)) } base += uint16(len(seg)) } return vertices, indices }