// Copyright 2021 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package readerdriver import ( "io" "runtime" "sync" "unsafe" "golang.org/x/sys/windows" ) const headerBufferSize = 2048 func IsAvailable() bool { return true } type header struct { waveOut uintptr buffer []byte waveHdr *wavehdr } func newHeader(waveOut uintptr, bufferSize int) (*header, error) { h := &header{ waveOut: waveOut, buffer: make([]byte, bufferSize), } h.waveHdr = &wavehdr{ lpData: uintptr(unsafe.Pointer(&h.buffer[0])), dwBufferLength: uint32(bufferSize), } if err := waveOutPrepareHeader(waveOut, h.waveHdr); err != nil { return nil, err } return h, nil } func (h *header) Write(data []byte) error { if n := len(h.buffer) - len(data); n > 0 { data = append(data, make([]byte, n)...) } copy(h.buffer, data) return waveOutWrite(h.waveOut, h.waveHdr) } func (h *header) IsQueued() bool { return h.waveHdr.dwFlags&whdrInqueue != 0 } func (h *header) Close() error { return waveOutUnprepareHeader(h.waveOut, h.waveHdr) } type context struct { sampleRate int channelNum int bitDepthInBytes int } func NewContext(sampleRate, channelNum, bitDepthInBytes int) (Context, chan struct{}, error) { ready := make(chan struct{}) close(ready) c := &context{ sampleRate: sampleRate, channelNum: channelNum, bitDepthInBytes: bitDepthInBytes, } thePlayers.setContext(c) return c, ready, nil } func (c *context) Suspend() error { return thePlayers.suspend() } func (c *context) Resume() error { return thePlayers.resume() } type players struct { context *context players map[*playerImpl]struct{} buf []byte err error waveOut uintptr headers []*header cond *sync.Cond } func (p *players) setContext(context *context) { p.cond.L.Lock() defer p.cond.L.Unlock() p.context = context } func (p *players) add(player *playerImpl) error { p.cond.L.Lock() defer p.cond.L.Unlock() if p.err != nil { return p.err } if p.players == nil { p.players = map[*playerImpl]struct{}{} } p.players[player] = struct{}{} p.cond.Signal() if p.waveOut != 0 { return nil } numBlockAlign := p.context.channelNum * p.context.bitDepthInBytes f := &waveformatex{ wFormatTag: waveFormatPCM, nChannels: uint16(p.context.channelNum), nSamplesPerSec: uint32(p.context.sampleRate), nAvgBytesPerSec: uint32(p.context.sampleRate * numBlockAlign), wBitsPerSample: uint16(p.context.bitDepthInBytes * 8), nBlockAlign: uint16(numBlockAlign), } w, err := waveOutOpen(f, waveOutOpenCallback) const elementNotFound = 1168 if e, ok := err.(*winmmError); ok && e.errno == elementNotFound { // TODO: No device was found. Return the dummy device (hajimehoshi/oto#77). // TODO: Retry to open the device when possible. return err } if err != nil { return err } p.waveOut = w p.headers = make([]*header, 0, 4) for len(p.headers) < cap(p.headers) { h, err := newHeader(p.waveOut, headerBufferSize) if err != nil { return err } p.headers = append(p.headers, h) } if err := p.readAndWriteBuffersImpl(); err != nil { return err } go p.loop() return nil } func (p *players) remove(player *playerImpl) error { p.cond.L.Lock() defer p.cond.L.Unlock() return p.removeImpl(player) } func (p *players) removeImpl(player *playerImpl) error { if p.err != nil { return p.err } delete(p.players, player) return nil } func (p *players) shouldWait() bool { if len(p.players) == 0 { return true } if p.waveOut == 0 { return false } if len(p.buf) < headerBufferSize*len(p.headers) { return false } for _, h := range p.headers { if !h.IsQueued() { return false } } return true } func (p *players) wait() bool { p.cond.L.Lock() defer p.cond.L.Unlock() for p.shouldWait() { p.cond.Wait() } return p.waveOut != 0 } func (p *players) loop() { for { if !p.wait() { return } if err := p.readAndWriteBuffers(); err != nil { p.setError(err) break } } } func (p *players) setError(err error) { p.cond.L.Lock() defer p.cond.L.Unlock() p.err = err } func (p *players) suspend() error { p.cond.L.Lock() defer p.cond.L.Unlock() if p.waveOut == 0 { return nil } if err := waveOutPause(p.waveOut); err != nil { return err } return nil } func (p *players) resume() error { p.cond.L.Lock() defer p.cond.L.Unlock() if p.waveOut == 0 { return nil } if err := waveOutRestart(p.waveOut); err != nil { return err } p.cond.Signal() return nil } var waveOutOpenCallback = windows.NewCallbackCDecl(func(hwo, uMsg, dwInstance, dwParam1, dwParam2 uintptr) uintptr { const womDone = 0x3bd if uMsg != womDone { return 0 } thePlayers.cond.Signal() return 0 }) func (p *players) readAndWriteBuffers() error { p.cond.L.Lock() defer p.cond.L.Unlock() return p.readAndWriteBuffersImpl() } func (p *players) readAndWriteBuffersImpl() error { if len(p.players) == 0 { return nil } headerNum := 0 for _, h := range p.headers { if h.IsQueued() { continue } headerNum++ } if headerNum == 0 { return nil } if n := headerBufferSize*headerNum - len(p.buf); n > 0 { // Do mixing of the current players instead of mixing on the OS side. // Apparently, mixing on the Go side is more effient and requires less buffers. // // waveOutSetVolume is not used since it doesn't work correctly in some environments. var volumes []float64 var bufs [][]byte for pl := range p.players { buf := make([]byte, n) n := pl.read(buf) bufs = append(bufs, buf[:n]) volumes = append(volumes, pl.Volume()) } buf := make([]byte, n) switch p.context.bitDepthInBytes { case 1: const ( max = 127 min = -128 offset = 128 ) for i := 0; i < n; i++ { var x int16 for j, b := range bufs { if len(b) <= i { continue } xx := int16(b[i]) - offset x += int16(float64(xx) * volumes[j]) } if x > max { x = max } if x < min { x = min } buf[i] = byte(x + offset) } case 2: const ( max = (1 << 15) - 1 min = -(1 << 15) ) for i := 0; i < n/2; i++ { var x int32 for j, b := range bufs { if len(b) <= 2*i { continue } xx := int32(int16(b[2*i]) | (int16(b[2*i+1]) << 8)) x += int32(float64(xx) * volumes[j]) } if x > max { x = max } if x < min { x = min } buf[2*i] = byte(x) buf[2*i+1] = byte(x >> 8) } } p.buf = append(p.buf, buf...) } for _, h := range p.headers { if len(p.buf) < headerBufferSize { break } if h.IsQueued() { continue } if err := h.Write(p.buf[:headerBufferSize]); err != nil { // This error can happen when e.g. a new HDMI connection is detected (hajimehoshi/oto#51). const errorNotFound = 1168 if werr := err.(*winmmError); werr.fname == "waveOutWrite" && werr.errno == errorNotFound { // TODO: Retry later. } return err } p.buf = p.buf[headerBufferSize:] } return nil } var thePlayers = players{ cond: sync.NewCond(&sync.Mutex{}), } type player struct { p *playerImpl } type playerImpl struct { context *context src io.Reader err error state playerState buf []byte eof bool volume float64 m sync.Mutex } func (c *context) NewPlayer(src io.Reader) Player { p := &player{ p: &playerImpl{ context: c, src: src, volume: 1, }, } runtime.SetFinalizer(p, (*player).Close) return p } func (p *player) Err() error { return p.p.Err() } func (p *playerImpl) Err() error { p.m.Lock() defer p.m.Unlock() return p.err } func (p *player) Play() { p.p.Play() } func (p *playerImpl) Play() { // Call Play asynchronously since playImpl might take long. ch := make(chan struct{}) go func() { p.m.Lock() defer p.m.Unlock() close(ch) p.playImpl() }() // Wait until the mutex is locked in the above goroutine. <-ch } func (p *playerImpl) playImpl() { if p.err != nil { return } if p.state != playerPaused { return } buf := make([]byte, p.context.maxBufferSize()) for len(p.buf) < p.context.maxBufferSize() { n, err := p.src.Read(buf) if err != nil && err != io.EOF { p.setErrorImpl(err) return } p.buf = append(p.buf, buf[:n]...) if err == io.EOF { p.eof = true break } } if p.eof && len(p.buf) == 0 { return } // thePlayers can has another mutex, and double mutex might introduce a deadlock. p.m.Unlock() err := thePlayers.add(p) p.m.Lock() if err != nil { p.setErrorImpl(err) return } p.state = playerPlay // Do not create the player's own loop. Scheduling on Winodws is inefficient compared to the other OSes. } func (p *player) Pause() { p.p.Pause() } func (p *playerImpl) Pause() { p.m.Lock() defer p.m.Unlock() p.pauseImpl() } func (p *playerImpl) pauseImpl() { if p.err != nil { return } if p.state != playerPlay { return } p.state = playerPaused } func (p *player) Reset() { p.p.Reset() } func (p *playerImpl) Reset() { p.m.Lock() defer p.m.Unlock() p.resetImpl() } func (p *playerImpl) resetImpl() { if p.err != nil { return } if p.state == playerClosed { return } p.state = playerPaused p.buf = p.buf[:0] p.eof = false } func (p *player) IsPlaying() bool { return p.p.IsPlaying() } func (p *playerImpl) IsPlaying() bool { p.m.Lock() defer p.m.Unlock() return p.state == playerPlay } func (p *player) Volume() float64 { return p.p.Volume() } func (p *playerImpl) Volume() float64 { p.m.Lock() defer p.m.Unlock() return p.volume } func (p *player) SetVolume(volume float64) { p.p.SetVolume(volume) } func (p *playerImpl) SetVolume(volume float64) { p.m.Lock() defer p.m.Unlock() p.volume = volume } func (p *player) UnplayedBufferSize() int { return p.p.UnplayedBufferSize() } func (p *playerImpl) UnplayedBufferSize() int { p.m.Lock() defer p.m.Unlock() return len(p.buf) } func (p *player) Close() error { runtime.SetFinalizer(p, nil) return p.p.Close() } func (p *playerImpl) Close() error { p.m.Lock() defer p.m.Unlock() return p.closeImpl() } func (p *playerImpl) closeImpl() error { p.state = playerClosed p.m.Unlock() err := thePlayers.remove(p) p.m.Lock() if err != nil && p.err == nil { p.err = err } return p.err } func (p *playerImpl) setError(err error) { p.m.Lock() defer p.m.Unlock() p.setErrorImpl(err) } func (p *playerImpl) setErrorImpl(err error) { p.err = err p.closeImpl() } func (p *playerImpl) read(buf []byte) int { p.m.Lock() defer p.m.Unlock() if p.state != playerPlay { return 0 } if len(p.buf) == 0 && p.eof { p.pauseImpl() return 0 } if len(p.buf) < p.context.maxBufferSize() { buf := make([]byte, p.context.maxBufferSize()) n, err := p.src.Read(buf) if err != nil && err != io.EOF { p.setErrorImpl(err) return len(buf) } p.buf = append(p.buf, buf[:n]...) if err == io.EOF { p.eof = true } } bytesPerSample := p.context.channelNum * p.context.bitDepthInBytes n := len(p.buf) / bytesPerSample * bytesPerSample n = copy(buf, p.buf[:n]) p.buf = p.buf[n:] return n }