// Copyright 2017 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // +build !js package mp3 import ( "fmt" "io" ) func (s *source) readCRC() error { buf := make([]int, 2) n := 0 var err error for n < 2 && err == nil { nn, err2 := s.getBytes(buf[n:]) n += nn err = err2 } if err == io.EOF { if n < 2 { return fmt.Errorf("mp3: unexpected EOF at readCRC") } return nil } if err != nil { return err } return nil } func (s *source) readNextFrame(prev *frame) (*frame, error) { h, err := s.readHeader() if err != nil { return nil, err } // Get CRC word if present if h.protection_bit == 0 { if err := s.readCRC(); err != nil { return nil, err } } if h.layer != mpeg1Layer3 { return nil, fmt.Errorf("mp3: only layer3 (want %d; got %d) is supported!", mpeg1Layer3, h.layer) } // Get side info si, err := s.readSideInfo(h) if err != nil { return nil, err } // If there's not enough main data in the bit reservoir, // signal to calling function so that decoding isn't done! // Get main data(scalefactors and Huffman coded frequency data) var prevM *mainDataBytes if prev != nil { prevM = prev.mainDataBytes } md, mdb, err := s.readMainL3(prevM, h, si) if err != nil { return nil, err } nf := &frame{ prev: prev, header: h, sideInfo: si, mainData: md, mainDataBytes: mdb, } if nf.prev != nil { nf.store = nf.prev.store nf.v_vec = nf.prev.v_vec } return nf, nil } func isHeader(header uint32) bool { const C_SYNC = 0xffe00000 if (header & C_SYNC) != C_SYNC { return false } // Bitrate must not be 15. if (header & (0xf << 12)) == 0xf<<12 { return false } // Sample Frequency must not be 3. if (header & (3 << 10)) == 3<<10 { return false } return true } func (s *source) readHeader() (*mpeg1FrameHeader, error) { // Get the next four bytes from the bitstream buf := make([]int, 4) n := 0 var err error for n < 4 && err == nil { nn, err2 := s.getBytes(buf[n:]) n += nn err = err2 } if n < 4 { if err == io.EOF { if n == 0 { return nil, eof } return nil, fmt.Errorf("mp3: unexpected EOF at readHeader") } return nil, err } b1 := uint32(buf[0]) b2 := uint32(buf[1]) b3 := uint32(buf[2]) b4 := uint32(buf[3]) header := (b1 << 24) | (b2 << 16) | (b3 << 8) | (b4 << 0) for !isHeader(uint32(header)) { // No,so scan the bitstream one byte at a time until we find it or EOF // Shift the values one byte to the left b1 = b2 b2 = b3 b3 = b4 // Get one new byte from the bitstream b, err := s.getByte() if err != nil { if err == io.EOF { return nil, fmt.Errorf("mp3: unexpected EOF at readHeader") } return nil, err } b4 = uint32(b) header = (b1 << 24) | (b2 << 16) | (b3 << 8) | (b4 << 0) } // If we get here we've found the sync word,and can decode the header // which is in the low 20 bits of the 32-bit sync+header word. // Decode the header h := &mpeg1FrameHeader{} h.id = int((header & 0x00180000) >> 19) h.layer = mpeg1Layer((header & 0x00060000) >> 17) h.protection_bit = int((header & 0x00010000) >> 16) h.bitrate_index = int((header & 0x0000f000) >> 12) h.sampling_frequency = int((header & 0x00000c00) >> 10) h.padding_bit = int((header & 0x00000200) >> 9) h.private_bit = int((header & 0x00000100) >> 8) h.mode = mpeg1Mode((header & 0x000000c0) >> 6) h.mode_extension = int((header & 0x00000030) >> 4) h.copyright = int((header & 0x00000008) >> 3) h.original_or_copy = int((header & 0x00000004) >> 2) h.emphasis = int((header & 0x00000003) >> 0) // Check for invalid values and impossible combinations if h.id != 3 { return nil, fmt.Errorf("mp3: ID must be 3. Header word is 0x%08x at file pos %d", header, s.getFilepos()) } if h.bitrate_index == 0 { return nil, fmt.Errorf("mp3: Free bitrate format NIY! Header word is 0x%08x at file pos %d", header, s.getFilepos()) } if h.bitrate_index == 15 { return nil, fmt.Errorf("mp3: bitrate_index = 15 is invalid! Header word is 0x%08x at file pos %d", header, s.getFilepos()) } if h.sampling_frequency == 3 { return nil, fmt.Errorf("mp3: sampling_frequency = 3 is invalid! Header word is 0x%08x at file pos %d", header, s.getFilepos()) } if h.layer == mpeg1LayerReserved { return nil, fmt.Errorf("mp3: layer = %d is invalid! Header word is 0x%08x at file pos %d", mpeg1LayerReserved, header, s.getFilepos()) } return h, nil } func (m *mainDataBytes) readHuffman(header *mpeg1FrameHeader, sideInfo *mpeg1SideInfo, mainData *mpeg1MainData, part_2_start, gr, ch int) error { // Check that there is any data to decode. If not,zero the array. if sideInfo.part2_3_length[gr][ch] == 0 { for is_pos := 0; is_pos < 576; is_pos++ { mainData.is[gr][ch][is_pos] = 0.0 } return nil } // Calculate bit_pos_end which is the index of the last bit for this part. bit_pos_end := part_2_start + sideInfo.part2_3_length[gr][ch] - 1 // Determine region boundaries region_1_start := 0 region_2_start := 0 if (sideInfo.win_switch_flag[gr][ch] == 1) && (sideInfo.block_type[gr][ch] == 2) { region_1_start = 36 // sfb[9/3]*3=36 region_2_start = 576 // No Region2 for short block case. } else { sfreq := header.sampling_frequency region_1_start = sfBandIndicesSet[sfreq].l[sideInfo.region0_count[gr][ch]+1] region_2_start = sfBandIndicesSet[sfreq].l[sideInfo.region0_count[gr][ch]+ sideInfo.region1_count[gr][ch]+2] } // Read big_values using tables according to region_x_start for is_pos := 0; is_pos < sideInfo.big_values[gr][ch]*2; is_pos++ { table_num := 0 if is_pos < region_1_start { table_num = sideInfo.table_select[gr][ch][0] } else if is_pos < region_2_start { table_num = sideInfo.table_select[gr][ch][1] } else { table_num = sideInfo.table_select[gr][ch][2] } // Get next Huffman coded words x, y, _, _, err := huffmanDecode(m, table_num) if err != nil { return err } // In the big_values area there are two freq lines per Huffman word mainData.is[gr][ch][is_pos] = float32(x) is_pos++ mainData.is[gr][ch][is_pos] = float32(y) } // Read small values until is_pos = 576 or we run out of huffman data table_num := sideInfo.count1table_select[gr][ch] + 32 is_pos := sideInfo.big_values[gr][ch] * 2 for (is_pos <= 572) && (m.getMainPos() <= bit_pos_end) { // Get next Huffman coded words x, y, v, w, err := huffmanDecode(m, table_num) if err != nil { return err } mainData.is[gr][ch][is_pos] = float32(v) is_pos++ if is_pos >= 576 { break } mainData.is[gr][ch][is_pos] = float32(w) is_pos++ if is_pos >= 576 { break } mainData.is[gr][ch][is_pos] = float32(x) is_pos++ if is_pos >= 576 { break } mainData.is[gr][ch][is_pos] = float32(y) is_pos++ } // Check that we didn't read past the end of this section if m.getMainPos() > (bit_pos_end + 1) { // Remove last words read is_pos -= 4 } // Setup count1 which is the index of the first sample in the rzero reg. sideInfo.count1[gr][ch] = is_pos // Zero out the last part if necessary for is_pos < 576 { mainData.is[gr][ch][is_pos] = 0.0 is_pos++ } // Set the bitpos to point to the next part to read m.setMainPos(bit_pos_end + 1) return nil }