// Copyright 2018 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package atlas import ( "fmt" "image" "runtime" "sync" "github.com/hajimehoshi/ebiten/v2/internal/affine" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" "github.com/hajimehoshi/ebiten/v2/internal/packing" "github.com/hajimehoshi/ebiten/v2/internal/restorable" ) const ( // paddingSize represents the size of padding around an image. // Every image or node except for a screen image has its padding. paddingSize = 1 ) var ( minSize = 0 maxSize = 0 ) type temporaryPixels struct { pixels []byte pos int notFullyUsedTime int } var theTemporaryPixels temporaryPixels func temporaryPixelsByteSize(size int) int { l := 16 for l < size { l *= 2 } return l } // alloc allocates the pixels and reutrns it. // Be careful that the returned pixels might not be zero-cleared. func (t *temporaryPixels) alloc(size int) []byte { if len(t.pixels) < t.pos+size { t.pixels = make([]byte, max(len(t.pixels)*2, temporaryPixelsByteSize(size))) t.pos = 0 } pix := t.pixels[t.pos : t.pos+size] t.pos += size return pix } func (t *temporaryPixels) resetAtFrameEnd() { const maxNotFullyUsedTime = 60 if temporaryPixelsByteSize(t.pos) < len(t.pixels) { if t.notFullyUsedTime < maxNotFullyUsedTime { t.notFullyUsedTime++ } } else { t.notFullyUsedTime = 0 } // Let the pixels GCed if this is not used for a while. if t.notFullyUsedTime == maxNotFullyUsedTime && len(t.pixels) > 0 { t.pixels = nil t.notFullyUsedTime = 0 } // Reset the position and reuse the allocated bytes. // t.pixels should already be sent to GPU, then this can be reused. t.pos = 0 } func max(a, b int) int { if a > b { return a } return b } func min(a, b int) int { if a < b { return a } return b } func resolveDeferred() { deferredM.Lock() fs := deferred deferred = nil deferredM.Unlock() for _, f := range fs { f() } } // baseCountToPutOnAtlas represents the base time duration when the image can be put onto an atlas. // Actual time duration is increased in an exponential way for each usages as a rendering target. const baseCountToPutOnAtlas = 10 func putImagesOnAtlas(graphicsDriver graphicsdriver.Graphics) error { for i := range imagesToPutOnAtlas { i.usedAsSourceCount++ if i.usedAsSourceCount >= baseCountToPutOnAtlas*(1< Resolve] -> [Restore -> Resolve] -> ... // // Between each frame, any image operations are not permitted, or stale images would remain when restoring // (#913). backendsM.Lock() } // Image is a rectangle pixel set that might be on an atlas. type Image struct { width int height int disposed bool independent bool volatile bool screen bool backend *backend node *packing.Node // usedAsSourceCount represents how long the image is used as a rendering source and kept not modified with // DrawTriangles. // In the current implementation, if an image is being modified by DrawTriangles, the image is separated from // a restorable image on an atlas by ensureIsolated. // // usedAsSourceCount is increased if the image is used as a rendering source, or set to 0 if the image is // modified. // // ReplacePixels doesn't affect this value since ReplacePixels can be done on images on an atlas. usedAsSourceCount int // isolatedCount represents how many times the image on a texture atlas is changed into an isolated image. // isolatedCount affects the calculation when to put the image onto a texture atlas again. isolatedCount int } // moveTo moves its content to the given image dst. // After moveTo is called, the image i is no longer available. // // moveTo is smilar to C++'s move semantics. func (i *Image) moveTo(dst *Image) { dst.dispose(false) *dst = *i // i is no longer available but Dispose must not be called // since i and dst have the same values like node. runtime.SetFinalizer(i, nil) } func (i *Image) isOnAtlas() bool { return i.node != nil } func (i *Image) resetUsedAsSourceCount() { i.usedAsSourceCount = 0 delete(imagesToPutOnAtlas, i) } func (i *Image) ensureIsolated() { i.resetUsedAsSourceCount() if i.backend == nil { i.allocate(false) return } if !i.isOnAtlas() { return } ox, oy, w, h := i.regionWithPadding() dx0 := float32(0) dy0 := float32(0) dx1 := float32(w) dy1 := float32(h) sx0 := float32(ox) sy0 := float32(oy) sx1 := float32(ox + w) sy1 := float32(oy + h) newImg := restorable.NewImage(w, h) newImg.SetVolatile(i.volatile) vs := []float32{ dx0, dy0, sx0, sy0, 1, 1, 1, 1, dx1, dy0, sx1, sy0, 1, 1, 1, 1, dx0, dy1, sx0, sy1, 1, 1, 1, 1, dx1, dy1, sx1, sy1, 1, 1, 1, 1, } is := graphics.QuadIndices() srcs := [graphics.ShaderImageNum]*restorable.Image{i.backend.restorable} var offsets [graphics.ShaderImageNum - 1][2]float32 dstRegion := graphicsdriver.Region{ X: paddingSize, Y: paddingSize, Width: float32(w - 2*paddingSize), Height: float32(h - 2*paddingSize), } newImg.DrawTriangles(srcs, offsets, vs, is, affine.ColorMIdentity{}, graphicsdriver.CompositeModeCopy, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, dstRegion, graphicsdriver.Region{}, nil, nil, false) i.dispose(false) i.backend = &backend{ restorable: newImg, } i.isolatedCount++ } func (i *Image) putOnAtlas(graphicsDriver graphicsdriver.Graphics) error { if i.backend == nil { i.allocate(true) return nil } if i.isOnAtlas() { return nil } if !i.canBePutOnAtlas() { panic("atlas: putOnAtlas cannot be called on a image that cannot be on an atlas") } newI := NewImage(i.width, i.height) newI.SetVolatile(i.volatile) if restorable.NeedsRestoring() { // If the underlying graphics driver requires restoring from the context lost, the pixel data is // needed. An image on an atlas must have its complete pixel data in this case. pixels := make([]byte, 4*i.width*i.height) for y := 0; y < i.height; y++ { for x := 0; x < i.width; x++ { r, g, b, a, err := i.at(graphicsDriver, x+paddingSize, y+paddingSize) if err != nil { return err } pixels[4*(i.width*y+x)] = r pixels[4*(i.width*y+x)+1] = g pixels[4*(i.width*y+x)+2] = b pixels[4*(i.width*y+x)+3] = a } } newI.replacePixels(pixels, 0, 0, i.width, i.height) } else { // If the underlying graphics driver doesn't require restoring from the context lost, just a regular // rendering works. w, h := float32(i.width), float32(i.height) vs := graphics.QuadVertices(0, 0, w, h, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1) is := graphics.QuadIndices() dr := graphicsdriver.Region{ X: 0, Y: 0, Width: w, Height: h, } newI.drawTriangles([graphics.ShaderImageNum]*Image{i}, vs, is, affine.ColorMIdentity{}, graphicsdriver.CompositeModeCopy, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, dr, graphicsdriver.Region{}, [graphics.ShaderImageNum - 1][2]float32{}, nil, nil, false, true) } newI.moveTo(i) i.usedAsSourceCount = 0 return nil } func (i *Image) regionWithPadding() (x, y, width, height int) { if i.backend == nil { panic("atlas: backend must not be nil: not allocated yet?") } if !i.isOnAtlas() { return 0, 0, i.width + 2*paddingSize, i.height + 2*paddingSize } return i.node.Region() } func (i *Image) processSrc(src *Image) { if src == nil { return } if src.disposed { panic("atlas: the drawing source image must not be disposed (DrawTriangles)") } if src.backend == nil { src.allocate(true) } // Compare i and source images after ensuring i is not on an atlas, or // i and a source image might share the same atlas even though i != src. if i.backend.restorable == src.backend.restorable { panic("atlas: Image.DrawTriangles: source must be different from the receiver") } } // DrawTriangles draws triangles with the given image. // // The vertex floats are: // // 0: Destination X in pixels // 1: Destination Y in pixels // 2: Source X in pixels (the upper-left is (0, 0)) // 3: Source Y in pixels // 4: Color R [0.0-1.0] // 5: Color G // 6: Color B // 7: Color Y func (i *Image) DrawTriangles(srcs [graphics.ShaderImageNum]*Image, vertices []float32, indices []uint16, colorm affine.ColorM, mode graphicsdriver.CompositeMode, filter graphicsdriver.Filter, address graphicsdriver.Address, dstRegion, srcRegion graphicsdriver.Region, subimageOffsets [graphics.ShaderImageNum - 1][2]float32, shader *Shader, uniforms [][]float32, evenOdd bool) { backendsM.Lock() defer backendsM.Unlock() i.drawTriangles(srcs, vertices, indices, colorm, mode, filter, address, dstRegion, srcRegion, subimageOffsets, shader, uniforms, evenOdd, false) } func (i *Image) drawTriangles(srcs [graphics.ShaderImageNum]*Image, vertices []float32, indices []uint16, colorm affine.ColorM, mode graphicsdriver.CompositeMode, filter graphicsdriver.Filter, address graphicsdriver.Address, dstRegion, srcRegion graphicsdriver.Region, subimageOffsets [graphics.ShaderImageNum - 1][2]float32, shader *Shader, uniforms [][]float32, evenOdd bool, keepOnAtlas bool) { if i.disposed { panic("atlas: the drawing target image must not be disposed (DrawTriangles)") } if keepOnAtlas { if i.backend == nil { i.allocate(true) } } else { i.ensureIsolated() } for _, src := range srcs { i.processSrc(src) } // If a color matrix is used, but the matrix is merely a scaling matrix, // and the scaling cannot cause out-of-range colors, do not use a color matrix // when rendering but instead multiply all vertex colors by the scale. // This speeds up rendering. // // NOTE: this is only safe when not using a custom Kage shader, // as custom shaders may be using vertex colors for different purposes // than colorization. However, currently there are no Ebiten APIs that // support both shaders and color matrices. cr := float32(1) cg := float32(1) cb := float32(1) ca := float32(1) if !colorm.IsIdentity() && colorm.ScaleOnly() { r := colorm.At(0, 0) g := colorm.At(1, 1) b := colorm.At(2, 2) a := colorm.At(3, 3) if r >= 0 && g >= 0 && b >= 0 && a >= 0 && r <= 1 && g <= 1 && b <= 1 { // Color matrices work on non-premultiplied colors. // This color matrix can only make colors darker or equal, // and thus can never invoke color clamping. // Thus the simpler vertex color scale based shader can be used. // // Negative color values can become positive and out-of-range // after applying to vertex colors below, which can make the min() in the shader kick in. // // Alpha values smaller than 0, combined with negative vertex colors, // can also make the min() kick in, so that shall be ruled out too. cr, cg, cb, ca = r, g, b, a colorm = affine.ColorMIdentity{} } } var dx, dy float32 // A screen image doesn't have its padding. if !i.screen { x, y, _, _ := i.regionWithPadding() dx = float32(x) + paddingSize dy = float32(y) + paddingSize // TODO: Check if dstRegion does not to violate the region. } dstRegion.X += dx dstRegion.Y += dy var oxf, oyf float32 if srcs[0] != nil { ox, oy, _, _ := srcs[0].regionWithPadding() ox += paddingSize oy += paddingSize oxf, oyf = float32(ox), float32(oy) n := len(vertices) for i := 0; i < n; i += graphics.VertexFloatNum { vertices[i] += dx vertices[i+1] += dy vertices[i+2] += oxf vertices[i+3] += oyf vertices[i+4] *= cr vertices[i+5] *= cg vertices[i+6] *= cb vertices[i+7] *= ca } // srcRegion can be delibarately empty when this is not needed in order to avoid unexpected // performance issue (#1293). if srcRegion.Width != 0 && srcRegion.Height != 0 { srcRegion.X += oxf srcRegion.Y += oyf } } else { n := len(vertices) for i := 0; i < n; i += graphics.VertexFloatNum { vertices[i] += dx vertices[i+1] += dy vertices[i+4] *= cr vertices[i+5] *= cg vertices[i+6] *= cb vertices[i+7] *= ca } } var offsets [graphics.ShaderImageNum - 1][2]float32 var s *restorable.Shader var imgs [graphics.ShaderImageNum]*restorable.Image if shader == nil { // Fast path for rendering without a shader (#1355). imgs[0] = srcs[0].backend.restorable } else { for i, subimageOffset := range subimageOffsets { src := srcs[i+1] if src == nil { continue } ox, oy, _, _ := src.regionWithPadding() offsets[i][0] = float32(ox) + paddingSize - oxf + subimageOffset[0] offsets[i][1] = float32(oy) + paddingSize - oyf + subimageOffset[1] } s = shader.shader for i, src := range srcs { if src == nil { continue } imgs[i] = src.backend.restorable } } i.backend.restorable.DrawTriangles(imgs, offsets, vertices, indices, colorm, mode, filter, address, dstRegion, srcRegion, s, uniforms, evenOdd) for _, src := range srcs { if src == nil { continue } if !src.isOnAtlas() && src.canBePutOnAtlas() { // src might already registered, but assiging it again is not harmful. imagesToPutOnAtlas[src] = struct{}{} } } } func (i *Image) ReplacePixels(pix []byte, x, y, width, height int) { backendsM.Lock() defer backendsM.Unlock() i.replacePixels(pix, x, y, width, height) } func (i *Image) replacePixels(pix []byte, x, y, width, height int) { if i.disposed { panic("atlas: the image must not be disposed at replacePixels") } i.resetUsedAsSourceCount() if i.backend == nil { if pix == nil { return } i.allocate(true) } // If the replacing area is small, replace the pixels without the padding. if x != 0 || y != 0 || width != i.width || height != i.height { ox, oy, _, _ := i.regionWithPadding() x += ox + paddingSize y += oy + paddingSize copied := make([]byte, len(pix)) copy(copied, pix) i.backend.restorable.ReplacePixels(copied, x, y, width, height) return } // If the whole area is being replaced, add the padding. px, py, pw, ph := i.regionWithPadding() if pix == nil { i.backend.restorable.ReplacePixels(nil, px, py, pw, ph) return } ow, oh := pw-2*paddingSize, ph-2*paddingSize if l := 4 * ow * oh; len(pix) != l { panic(fmt.Sprintf("atlas: len(p) must be %d but %d", l, len(pix))) } pixb := theTemporaryPixels.alloc(4 * pw * ph) // Clear the edges. pixb might not be zero-cleared. rowPixels := 4 * pw for i := 0; i < rowPixels; i++ { pixb[i] = 0 } for j := 1; j < ph-1; j++ { pixb[rowPixels*j] = 0 pixb[rowPixels*j+1] = 0 pixb[rowPixels*j+2] = 0 pixb[rowPixels*j+3] = 0 pixb[rowPixels*(j+1)-4] = 0 pixb[rowPixels*(j+1)-3] = 0 pixb[rowPixels*(j+1)-2] = 0 pixb[rowPixels*(j+1)-1] = 0 } for i := 0; i < rowPixels; i++ { pixb[rowPixels*(ph-1)+i] = 0 } // Copy the content. for j := 0; j < oh; j++ { copy(pixb[4*((j+paddingSize)*pw+paddingSize):], pix[4*j*ow:4*(j+1)*ow]) } i.backend.restorable.ReplacePixels(pixb, px, py, pw, ph) } func (img *Image) Pixels(graphicsDriver graphicsdriver.Graphics, x, y, width, height int) ([]byte, error) { backendsM.Lock() defer backendsM.Unlock() x += paddingSize y += paddingSize bs := make([]byte, 4*width*height) idx := 0 for j := y; j < y+height; j++ { for i := x; i < x+width; i++ { r, g, b, a, err := img.at(graphicsDriver, i, j) if err != nil { return nil, err } bs[4*idx] = r bs[4*idx+1] = g bs[4*idx+2] = b bs[4*idx+3] = a idx++ } } return bs, nil } func (i *Image) at(graphicsDriver graphicsdriver.Graphics, x, y int) (byte, byte, byte, byte, error) { if i.backend == nil { return 0, 0, 0, 0, nil } ox, oy, w, h := i.regionWithPadding() if x < 0 || y < 0 || x >= w || y >= h { return 0, 0, 0, 0, nil } return i.backend.restorable.At(graphicsDriver, x+ox, y+oy) } // MarkDisposed marks the image as disposed. The actual operation is deferred. // MarkDisposed can be called from finalizers. // // A function from finalizer must not be blocked, but disposing operation can be blocked. // Defer this operation until it becomes safe. (#913) func (i *Image) MarkDisposed() { deferredM.Lock() deferred = append(deferred, func() { i.dispose(true) }) deferredM.Unlock() } func (i *Image) dispose(markDisposed bool) { defer func() { if markDisposed { i.disposed = true } i.backend = nil i.node = nil if markDisposed { runtime.SetFinalizer(i, nil) } }() i.resetUsedAsSourceCount() if i.disposed { return } if i.backend == nil { // Not allocated yet. return } if !i.isOnAtlas() { i.backend.restorable.Dispose() return } i.backend.page.Free(i.node) if !i.backend.page.IsEmpty() { // As this part can be reused, this should be cleared explicitly. i.backend.restorable.ClearPixels(i.regionWithPadding()) return } i.backend.restorable.Dispose() index := -1 for idx, sh := range theBackends { if sh == i.backend { index = idx break } } if index == -1 { panic("atlas: backend not found at an image being disposed") } theBackends = append(theBackends[:index], theBackends[index+1:]...) } func NewImage(width, height int) *Image { // Actual allocation is done lazily, and the lock is not needed. return &Image{ width: width, height: height, } } func (i *Image) SetIndependent(independent bool) { i.independent = independent } func (i *Image) SetVolatile(volatile bool) { i.volatile = volatile if i.backend == nil { return } if i.volatile { i.ensureIsolated() } i.backend.restorable.SetVolatile(i.volatile) } func (i *Image) canBePutOnAtlas() bool { if minSize == 0 || maxSize == 0 { panic("atlas: minSize or maxSize must be initialized") } if i.independent { return false } if i.volatile { return false } if i.screen { return false } return i.width+2*paddingSize <= maxSize && i.height+2*paddingSize <= maxSize } func (i *Image) allocate(putOnAtlas bool) { if i.backend != nil { panic("atlas: the image is already allocated") } runtime.SetFinalizer(i, (*Image).MarkDisposed) if i.screen { // A screen image doesn't have a padding. i.backend = &backend{ restorable: restorable.NewScreenFramebufferImage(i.width, i.height), } return } if !putOnAtlas || !i.canBePutOnAtlas() { i.backend = &backend{ restorable: restorable.NewImage(i.width+2*paddingSize, i.height+2*paddingSize), } i.backend.restorable.SetVolatile(i.volatile) return } for _, b := range theBackends { if n, ok := b.tryAlloc(i.width+2*paddingSize, i.height+2*paddingSize); ok { i.backend = b i.node = n return } } size := minSize for i.width+2*paddingSize > size || i.height+2*paddingSize > size { if size == maxSize { panic(fmt.Sprintf("atlas: the image being put on an atlas is too big: width: %d, height: %d", i.width, i.height)) } size *= 2 } b := &backend{ restorable: restorable.NewImage(size, size), page: packing.NewPage(size, maxSize), } b.restorable.SetVolatile(i.volatile) theBackends = append(theBackends, b) n := b.page.Alloc(i.width+2*paddingSize, i.height+2*paddingSize) if n == nil { panic("atlas: Alloc result must not be nil at allocate") } i.backend = b i.node = n } func (i *Image) DumpScreenshot(graphicsDriver graphicsdriver.Graphics, path string, blackbg bool) error { backendsM.Lock() defer backendsM.Unlock() return i.backend.restorable.Dump(graphicsDriver, path, blackbg, image.Rect(paddingSize, paddingSize, paddingSize+i.width, paddingSize+i.height)) } func NewScreenFramebufferImage(width, height int) *Image { // Actual allocation is done lazily. i := &Image{ width: width, height: height, screen: true, } return i } func EndFrame(graphicsDriver graphicsdriver.Graphics) error { backendsM.Lock() theTemporaryPixels.resetAtFrameEnd() return restorable.ResolveStaleImages(graphicsDriver) } func BeginFrame(graphicsDriver graphicsdriver.Graphics) error { defer backendsM.Unlock() var err error initOnce.Do(func() { err = restorable.InitializeGraphicsDriverState(graphicsDriver) if err != nil { return } if len(theBackends) != 0 { panic("atlas: all the images must be not on an atlas before the game starts") } minSize = 1024 maxSize = restorable.MaxImageSize(graphicsDriver) }) if err != nil { return err } resolveDeferred() if err := putImagesOnAtlas(graphicsDriver); err != nil { return err } return restorable.RestoreIfNeeded(graphicsDriver) } func DumpImages(graphicsDriver graphicsdriver.Graphics, dir string) error { backendsM.Lock() defer backendsM.Unlock() return restorable.DumpImages(graphicsDriver, dir) }