// Copyright 2016 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // +build !js package ebiten import ( "github.com/hajimehoshi/ebiten/internal/affine" "github.com/hajimehoshi/ebiten/internal/graphics" ) func vertices(parts ImageParts, width, height int, geo *affine.GeoM) []float32 { // TODO: This function should be in graphics package? totalSize := graphics.QuadVertexSizeInBytes() / 4 l := parts.Len() vs := make([]float32, l*totalSize) g := geo.UnsafeElements() g0 := float32(g[0]) g1 := float32(g[1]) g2 := float32(g[3]) g3 := float32(g[4]) g4 := float32(g[2]) g5 := float32(g[5]) w := 1 h := 1 for w < width { w *= 2 } for h < height { h *= 2 } wf := float32(w) hf := float32(h) n := 0 for i := 0; i < l; i++ { dx0, dy0, dx1, dy1 := parts.Dst(i) if dx0 == dx1 || dy0 == dy1 { continue } x0, y0, x1, y1 := float32(dx0), float32(dy0), float32(dx1), float32(dy1) sx0, sy0, sx1, sy1 := parts.Src(i) if sx0 == sx1 || sy0 == sy1 { continue } u0, v0, u1, v1 := float32(sx0)/wf, float32(sy0)/hf, float32(sx1)/wf, float32(sy1)/hf // Adjust texels to fix a problem that outside texels are used (#317). u1 -= 1.0 / wf / texelAdjustment v1 -= 1.0 / hf / texelAdjustment vs[n] = x0 vs[n+1] = y0 vs[n+2] = u0 vs[n+3] = v0 vs[n+4] = g0 vs[n+5] = g1 vs[n+6] = g2 vs[n+7] = g3 vs[n+8] = g4 vs[n+9] = g5 vs[n+10] = x1 vs[n+11] = y0 vs[n+12] = u1 vs[n+13] = v0 vs[n+14] = g0 vs[n+15] = g1 vs[n+16] = g2 vs[n+17] = g3 vs[n+18] = g4 vs[n+19] = g5 vs[n+20] = x0 vs[n+21] = y1 vs[n+22] = u0 vs[n+23] = v1 vs[n+24] = g0 vs[n+25] = g1 vs[n+26] = g2 vs[n+27] = g3 vs[n+28] = g4 vs[n+29] = g5 vs[n+30] = x1 vs[n+31] = y1 vs[n+32] = u1 vs[n+33] = v1 vs[n+34] = g0 vs[n+35] = g1 vs[n+36] = g2 vs[n+37] = g3 vs[n+38] = g4 vs[n+39] = g5 n += totalSize } return vs }