// Copyright 2020 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package shader import ( "fmt" "go/ast" "go/parser" "go/token" "strconv" "strings" "github.com/hajimehoshi/ebiten/internal/shaderir" ) type variable struct { name string typ typ init shaderir.Expr } type constant struct { name string typ typ init ast.Expr } type function struct { name string block *block ir shaderir.Func } type compileState struct { fs *token.FileSet vertexEntry string fragmentEntry string ir shaderir.Program // uniforms is a collection of uniform variable names. uniforms []string global block varyingParsed bool errs []string } func (cs *compileState) findUniformVariable(name string) (int, bool) { for i, u := range cs.uniforms { if u == name { return i, true } } return 0, false } type block struct { types []typ vars []variable consts []constant funcs []function pos token.Pos outer *block ir shaderir.Block } func (b *block) findLocalVariable(name string) (int, bool) { idx := 0 for outer := b.outer; outer != nil; outer = outer.outer { idx += len(outer.vars) } for i, v := range b.vars { if v.name == name { return idx + i, true } } if b.outer != nil { return b.outer.findLocalVariable(name) } return 0, false } type ParseError struct { errs []string } func (p *ParseError) Error() string { return strings.Join(p.errs, "\n") } func Compile(src []byte, vertexEntry, fragmentEntry string) (*shaderir.Program, error) { fs := token.NewFileSet() f, err := parser.ParseFile(fs, "", src, parser.AllErrors) if err != nil { return nil, err } s := &compileState{ fs: fs, vertexEntry: vertexEntry, fragmentEntry: fragmentEntry, } s.parse(f) if len(s.errs) > 0 { return nil, &ParseError{s.errs} } // TODO: Resolve identifiers? // TODO: Resolve constants // TODO: Make a call graph and reorder the elements. return &s.ir, nil } func (s *compileState) addError(pos token.Pos, str string) { p := s.fs.Position(pos) s.errs = append(s.errs, fmt.Sprintf("%s: %s", p, str)) } func (cs *compileState) parse(f *ast.File) { // Parse GenDecl for global variables, and then parse functions. for _, d := range f.Decls { if _, ok := d.(*ast.FuncDecl); !ok { cs.parseDecl(&cs.global, d) } } for _, d := range f.Decls { if _, ok := d.(*ast.FuncDecl); ok { cs.parseDecl(&cs.global, d) } } if len(cs.errs) > 0 { return } for _, f := range cs.global.funcs { cs.ir.Funcs = append(cs.ir.Funcs, f.ir) } } func (cs *compileState) parseDecl(b *block, d ast.Decl) { switch d := d.(type) { case *ast.GenDecl: switch d.Tok { case token.TYPE: // TODO: Parse other types for _, s := range d.Specs { s := s.(*ast.TypeSpec) t := cs.parseType(s.Type) t.name = s.Name.Name b.types = append(b.types, t) } case token.CONST: for _, s := range d.Specs { s := s.(*ast.ValueSpec) cs := cs.parseConstant(s) b.consts = append(b.consts, cs...) } case token.VAR: for _, s := range d.Specs { s := s.(*ast.ValueSpec) vs := cs.parseVariable(b, s) if b == &cs.global { for i, v := range vs { if v.name[0] < 'A' || 'Z' < v.name[0] { cs.addError(s.Names[i].Pos(), fmt.Sprintf("global variables must be exposed: %s", v.name)) } // TODO: Check init cs.uniforms = append(cs.uniforms, v.name) cs.ir.Uniforms = append(cs.ir.Uniforms, v.typ.ir) } continue } for _, v := range vs { b.vars = append(b.vars, v) b.ir.LocalVars = append(b.ir.LocalVars, v.typ.ir) } } case token.IMPORT: cs.addError(d.Pos(), "import is forbidden") default: cs.addError(d.Pos(), "unexpected token") } case *ast.FuncDecl: f := cs.parseFunc(b, d) if b == &cs.global { switch d.Name.Name { case cs.vertexEntry: cs.ir.VertexFunc.Block = f.ir.Block case cs.fragmentEntry: cs.ir.FragmentFunc.Block = f.ir.Block default: b.funcs = append(b.funcs, f) } } else { b.funcs = append(b.funcs, f) } default: cs.addError(d.Pos(), "unexpected decl") } } func (s *compileState) parseVariable(block *block, vs *ast.ValueSpec) []variable { var t typ if vs.Type != nil { t = s.parseType(vs.Type) } var vars []variable for i, n := range vs.Names { var init ast.Expr if len(vs.Values) > 0 { init = vs.Values[i] if t.ir.Main == shaderir.None { t = s.detectType(block, init) } } name := n.Name var e shaderir.Expr if init != nil { e = s.parseExpr(block, init) } vars = append(vars, variable{ name: name, typ: t, init: e, }) } return vars } func (s *compileState) parseConstant(vs *ast.ValueSpec) []constant { var t typ if vs.Type != nil { t = s.parseType(vs.Type) } var cs []constant for i, n := range vs.Names { cs = append(cs, constant{ name: n.Name, typ: t, init: vs.Values[i], }) } return cs } func (cs *compileState) parseFunc(block *block, d *ast.FuncDecl) function { if d.Name == nil { cs.addError(d.Pos(), "function must have a name") return function{} } if d.Body == nil { cs.addError(d.Pos(), "function must have a body") return function{} } var inT []shaderir.Type var inParams []variable for _, f := range d.Type.Params.List { t := cs.parseType(f.Type) for _, n := range f.Names { inParams = append(inParams, variable{ name: n.Name, typ: t, }) inT = append(inT, t.ir) } } var outT []shaderir.Type var outParams []variable if d.Type.Results != nil { for _, f := range d.Type.Results.List { t := cs.parseType(f.Type) if len(f.Names) == 0 { outParams = append(outParams, variable{ name: "", typ: t, }) outT = append(outT, t.ir) } else { for _, n := range f.Names { outParams = append(outParams, variable{ name: n.Name, typ: t, }) outT = append(outT, t.ir) } } } } checkVaryings := func(types []shaderir.Type) { if len(cs.ir.Varyings) != len(types) { cs.addError(d.Pos(), fmt.Sprintf("the number of vertex entry point's returning values and the number of framgent entry point's params must be the same")) return } for i, t := range cs.ir.Varyings { if t.Main != types[i].Main { cs.addError(d.Pos(), fmt.Sprintf("vertex entry point's returning value types and framgent entry point's param types must match")) } } } if block == &cs.global { switch d.Name.Name { case cs.vertexEntry: for _, t := range inT { cs.ir.Attributes = append(cs.ir.Attributes, t) } // The first out-param is treated as gl_Position in GLSL. if len(outParams) == 0 { cs.addError(d.Pos(), fmt.Sprintf("vertex entry point must have at least one returning vec4 value for a position")) return function{} } if outT[0].Main != shaderir.Vec4 { cs.addError(d.Pos(), fmt.Sprintf("vertex entry point must have at least one returning vec4 value for a position")) return function{} } if cs.varyingParsed { checkVaryings(outT[1:]) } else { for _, t := range outT[1:] { // TODO: Check that these params are not arrays or structs cs.ir.Varyings = append(cs.ir.Varyings, t) } } cs.varyingParsed = true case cs.fragmentEntry: if len(inParams) == 0 { cs.addError(d.Pos(), fmt.Sprintf("fragment entry point must have at least one vec4 parameter for a position")) return function{} } if inT[0].Main != shaderir.Vec4 { cs.addError(d.Pos(), fmt.Sprintf("fragment entry point must have at least one vec4 parameter for a position")) return function{} } if len(outParams) != 1 { cs.addError(d.Pos(), fmt.Sprintf("fragment entry point must have one returning vec4 value for a color")) return function{} } if outT[0].Main != shaderir.Vec4 { cs.addError(d.Pos(), fmt.Sprintf("fragment entry point must have one returning vec4 value for a color")) return function{} } if cs.varyingParsed { checkVaryings(inT[1:]) } else { for _, t := range inT[1:] { cs.ir.Varyings = append(cs.ir.Varyings, t) } } cs.varyingParsed = true } } b := cs.parseBlock(block, d.Body, inParams, outParams) return function{ name: d.Name.Name, block: b, ir: shaderir.Func{ Index: len(cs.ir.Funcs), InParams: inT, OutParams: outT, Block: b.ir, }, } } func (cs *compileState) parseBlock(outer *block, b *ast.BlockStmt, inParams, outParams []variable) *block { vars := make([]variable, 0, len(inParams)+len(outParams)) vars = append(vars, inParams...) vars = append(vars, outParams...) block := &block{ vars: vars, outer: outer, } for _, l := range b.List { switch l := l.(type) { case *ast.AssignStmt: switch l.Tok { case token.DEFINE: for i, e := range l.Lhs { v := variable{ name: e.(*ast.Ident).Name, } v.typ = cs.detectType(block, l.Rhs[i]) v.init = cs.parseExpr(block, l.Rhs[i]) block.vars = append(block.vars, v) block.ir.LocalVars = append(block.ir.LocalVars, v.typ.ir) block.ir.Stmts = append(block.ir.Stmts, shaderir.Stmt{ Type: shaderir.Assign, Exprs: []shaderir.Expr{ cs.parseExpr(block, l.Lhs[i]), v.init, }, }) } case token.ASSIGN: // TODO: What about the statement `a,b = b,a?` for i := range l.Rhs { block.ir.Stmts = append(block.ir.Stmts, shaderir.Stmt{ Type: shaderir.Assign, Exprs: []shaderir.Expr{ cs.parseExpr(block, l.Lhs[i]), cs.parseExpr(block, l.Rhs[i]), }, }) } } case *ast.BlockStmt: b := cs.parseBlock(block, l, nil, nil) block.ir.Stmts = append(block.ir.Stmts, shaderir.Stmt{ Type: shaderir.BlockStmt, Blocks: []shaderir.Block{ b.ir, }, }) case *ast.DeclStmt: cs.parseDecl(block, l.Decl) case *ast.ReturnStmt: for i, r := range l.Results { e := cs.parseExpr(block, r) block.ir.Stmts = append(block.ir.Stmts, shaderir.Stmt{ Type: shaderir.Assign, Exprs: []shaderir.Expr{ { Type: shaderir.LocalVariable, Index: len(inParams) + i, }, e, }, }) } block.ir.Stmts = append(block.ir.Stmts, shaderir.Stmt{ Type: shaderir.Return, }) } } return block } func (s *compileState) detectType(b *block, expr ast.Expr) typ { switch e := expr.(type) { case *ast.BasicLit: switch e.Kind { case token.FLOAT: return typ{ ir: shaderir.Type{Main: shaderir.Float}, } case token.INT: return typ{ ir: shaderir.Type{Main: shaderir.Int}, } } s.addError(expr.Pos(), fmt.Sprintf("unexpected literal: %s", e.Value)) return typ{} case *ast.CallExpr: n := e.Fun.(*ast.Ident).Name f, ok := shaderir.ParseBuiltinFunc(n) if ok { switch f { case shaderir.Vec2F: return typ{ir: shaderir.Type{Main: shaderir.Vec2}} case shaderir.Vec3F: return typ{ir: shaderir.Type{Main: shaderir.Vec3}} case shaderir.Vec4F: return typ{ir: shaderir.Type{Main: shaderir.Vec4}} case shaderir.Mat2F: return typ{ir: shaderir.Type{Main: shaderir.Mat2}} case shaderir.Mat3F: return typ{ir: shaderir.Type{Main: shaderir.Mat3}} case shaderir.Mat4F: return typ{ir: shaderir.Type{Main: shaderir.Mat4}} // TODO: Add more functions } } s.addError(expr.Pos(), fmt.Sprintf("unexpected call: %s", n)) return typ{} case *ast.CompositeLit: return s.parseType(e.Type) case *ast.Ident: n := e.Name for _, v := range b.vars { if v.name == n { return v.typ } } if b == &s.global { for i, v := range s.uniforms { if v == n { return typ{ir: s.ir.Uniforms[i]} } } } if b.outer != nil { return s.detectType(b.outer, e) } s.addError(expr.Pos(), fmt.Sprintf("unexpected identity: %s", n)) return typ{} //case *ast.SelectorExpr: //return fmt.Sprintf("%s.%s", dumpExpr(e.X), dumpExpr(e.Sel)) default: s.addError(expr.Pos(), fmt.Sprintf("detecting type not implemented: %#v", expr)) return typ{} } } func (cs *compileState) parseExpr(block *block, expr ast.Expr) shaderir.Expr { switch e := expr.(type) { case *ast.BasicLit: switch e.Kind { case token.INT: v, err := strconv.ParseInt(e.Value, 10, 32) if err != nil { cs.addError(e.Pos(), fmt.Sprintf("unexpected literal: %s", e.Value)) return shaderir.Expr{} } return shaderir.Expr{ Type: shaderir.IntExpr, Int: int32(v), } case token.FLOAT: v, err := strconv.ParseFloat(e.Value, 32) if err != nil { cs.addError(e.Pos(), fmt.Sprintf("unexpected literal: %s", e.Value)) return shaderir.Expr{} } return shaderir.Expr{ Type: shaderir.FloatExpr, Float: float32(v), } default: cs.addError(e.Pos(), fmt.Sprintf("literal not implemented: %#v", e)) } case *ast.BinaryExpr: var op shaderir.Op switch e.Op { case token.ADD: op = shaderir.Add case token.SUB: op = shaderir.Sub case token.NOT: op = shaderir.NotOp case token.MUL: op = shaderir.Mul case token.QUO: op = shaderir.Div case token.REM: op = shaderir.ModOp case token.SHL: op = shaderir.LeftShift case token.SHR: op = shaderir.RightShift case token.LSS: op = shaderir.LessThanOp case token.LEQ: op = shaderir.LessThanEqualOp case token.GTR: op = shaderir.GreaterThanOp case token.GEQ: op = shaderir.GreaterThanEqualOp case token.EQL: op = shaderir.EqualOp case token.NEQ: op = shaderir.NotEqualOp case token.AND: op = shaderir.And case token.XOR: op = shaderir.Xor case token.OR: op = shaderir.Or case token.LAND: op = shaderir.AndAnd case token.LOR: op = shaderir.OrOr default: cs.addError(e.Pos(), fmt.Sprintf("unexpected operator: %s", e.Op)) return shaderir.Expr{} } return shaderir.Expr{ Type: shaderir.Binary, Op: op, Exprs: []shaderir.Expr{ cs.parseExpr(block, e.X), cs.parseExpr(block, e.Y), }, } case *ast.CallExpr: exprs := []shaderir.Expr{ cs.parseExpr(block, e.Fun), } for _, a := range e.Args { e := cs.parseExpr(block, a) // TODO: Convert integer literals to float literals if necessary. exprs = append(exprs, e) } return shaderir.Expr{ Type: shaderir.Call, Exprs: exprs, } case *ast.Ident: if i, ok := block.findLocalVariable(e.Name); ok { return shaderir.Expr{ Type: shaderir.LocalVariable, Index: i, } } if i, ok := cs.findUniformVariable(e.Name); ok { return shaderir.Expr{ Type: shaderir.UniformVariable, Index: i, } } if f, ok := shaderir.ParseBuiltinFunc(e.Name); ok { return shaderir.Expr{ Type: shaderir.BuiltinFuncExpr, BuiltinFunc: f, } } cs.addError(e.Pos(), fmt.Sprintf("unexpected identifier: %s", e.Name)) case *ast.SelectorExpr: return shaderir.Expr{ Type: shaderir.FieldSelector, Exprs: []shaderir.Expr{ cs.parseExpr(block, e.X), { Type: shaderir.SwizzlingExpr, Swizzling: e.Sel.Name, }, }, } case *ast.UnaryExpr: var op shaderir.Op switch e.Op { case token.ADD: op = shaderir.Add case token.SUB: op = shaderir.Sub case token.NOT: op = shaderir.NotOp default: cs.addError(e.Pos(), fmt.Sprintf("unexpected operator: %s", e.Op)) return shaderir.Expr{} } return shaderir.Expr{ Type: shaderir.Unary, Op: op, Exprs: []shaderir.Expr{ cs.parseExpr(block, e.X), }, } default: cs.addError(e.Pos(), fmt.Sprintf("expression not implemented: %#v", e)) } return shaderir.Expr{} }