// Copyright 2017 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // +build !js package mp3 // #include "pdmp3.h" // // extern t_mpeg1_main_data g_main_data; // extern t_mpeg1_side_info g_side_info; // extern t_mpeg1_header g_frame_header; import "C" import ( "fmt" "io" ) func readCRC() error { buf := make([]int, 2) n := 0 var err error for n < 2 && err == nil { nn, err2 := getBytes(buf[n:]) n += nn err = err2 } if err == io.EOF { if n < 2 { return fmt.Errorf("mp3: unexpected EOF at readCRC") } return nil } if err != nil { return err } return nil } func readFrame() error { if err := readHeader(); err != nil { return err } /* Get CRC word if present */ if C.g_frame_header.protection_bit == 0 { if err := readCRC(); err != nil { return err } } if C.g_frame_header.layer == 3 { /* Get audio data */ Read_Audio_L3() /* Get side info */ /* If there's not enough main data in the bit reservoir, * signal to calling function so that decoding isn't done! */ /* Get main data(scalefactors and Huffman coded frequency data) */ if Read_Main_L3() != C.OK { // TODO: Fix this return fmt.Errorf("mp3: Read_Main_L3") } } else { return fmt.Errorf("mp3: Only layer 3(!= %d) is supported!", C.g_frame_header.layer) } return nil } func isHeader(header uint32) bool { const C_SYNC = 0xffe00000 if (header & C_SYNC) != C_SYNC { return false } // Bitrate must not be 15. if (header & (0xf << 12)) == 0xf<<12 { return false } // Sample Frequency must not be 3. if (header & (3 << 10)) == 3<<10 { return false } return true } func readHeader() error { /* Get the next four bytes from the bitstream */ buf := make([]int, 4) n := 0 var err error for n < 4 && err == nil { nn, err2 := getBytes(buf[n:]) n += nn err = err2 } if n < 4 { if err == io.EOF { return fmt.Errorf("mp3: unexpected EOF at readHeader") } return err } b1 := uint32(buf[0]) b2 := uint32(buf[1]) b3 := uint32(buf[2]) b4 := uint32(buf[3]) header := (b1 << 24) | (b2 << 16) | (b3 << 8) | (b4 << 0) for !isHeader(uint32(header)) { /* No,so scan the bitstream one byte at a time until we find it or EOF */ /* Shift the values one byte to the left */ b1 = b2 b2 = b3 b3 = b4 /* Get one new byte from the bitstream */ b, err := getByte() if err != nil { if err == io.EOF { return fmt.Errorf("mp3: unexpected EOF at readHeader") } return err } b4 = uint32(b) header = (b1 << 24) | (b2 << 16) | (b3 << 8) | (b4 << 0) } /* while... */ /* If we get here we've found the sync word,and can decode the header * which is in the low 20 bits of the 32-bit sync+header word. */ /* Decode the header */ C.g_frame_header.id = C.uint((header & 0x00180000) >> 19) C.g_frame_header.layer = C.t_mpeg1_layer((header & 0x00060000) >> 17) C.g_frame_header.protection_bit = C.uint((header & 0x00010000) >> 16) C.g_frame_header.bitrate_index = C.uint((header & 0x0000f000) >> 12) C.g_frame_header.sampling_frequency = C.uint((header & 0x00000c00) >> 10) C.g_frame_header.padding_bit = C.uint((header & 0x00000200) >> 9) C.g_frame_header.private_bit = C.uint((header & 0x00000100) >> 8) C.g_frame_header.mode = C.t_mpeg1_mode((header & 0x000000c0) >> 6) C.g_frame_header.mode_extension = C.uint((header & 0x00000030) >> 4) C.g_frame_header.copyright = C.uint((header & 0x00000008) >> 3) C.g_frame_header.original_or_copy = C.uint((header & 0x00000004) >> 2) C.g_frame_header.emphasis = C.uint((header & 0x00000003) >> 0) /* Check for invalid values and impossible combinations */ if C.g_frame_header.id != 3 { return fmt.Errorf("mp3: ID must be 3\nHeader word is 0x%08x at file pos %d", header, C.Get_Filepos()) } if C.g_frame_header.bitrate_index == 0 { return fmt.Errorf("mp3: Free bitrate format NIY!\nHeader word is 0x%08x at file pos %d", header, Get_Filepos()) } if C.g_frame_header.bitrate_index == 15 { return fmt.Errorf("mp3: bitrate_index = 15 is invalid!\nHeader word is 0x%08x at file pos %d", header, Get_Filepos()) } if C.g_frame_header.sampling_frequency == 3 { return fmt.Errorf("mp3: sampling_frequency = 3 is invalid! Header word is 0x%08x at file pos %d", header, Get_Filepos()) } if C.g_frame_header.layer == 0 { return fmt.Errorf("mp3: layer = 0 is invalid! Header word is 0x%08x at file pos %d", header, Get_Filepos()) } C.g_frame_header.layer = 4 - C.g_frame_header.layer return nil } func readHuffman(part_2_start, gr, ch int) error { /* Check that there is any data to decode. If not,zero the array. */ if C.g_side_info.part2_3_length[gr][ch] == 0 { for is_pos := 0; is_pos < 576; is_pos++ { C.g_main_data.is[gr][ch][is_pos] = 0.0 } return nil } /* Calculate bit_pos_end which is the index of the last bit for this part. */ bit_pos_end := part_2_start + int(C.g_side_info.part2_3_length[gr][ch]) - 1 /* Determine region boundaries */ region_1_start := 0 region_2_start := 0 if (C.g_side_info.win_switch_flag[gr][ch] == 1) && (C.g_side_info.block_type[gr][ch] == 2) { region_1_start = 36 /* sfb[9/3]*3=36 */ region_2_start = 576 /* No Region2 for short block case. */ } else { sfreq := C.g_frame_header.sampling_frequency region_1_start = sfBandIndicesSet[sfreq].l[C.g_side_info.region0_count[gr][ch]+1] region_2_start = sfBandIndicesSet[sfreq].l[C.g_side_info.region0_count[gr][ch]+ C.g_side_info.region1_count[gr][ch]+2] } /* Read big_values using tables according to region_x_start */ for is_pos := 0; is_pos < int(C.g_side_info.big_values[gr][ch])*2; is_pos++ { table_num := 0 if is_pos < region_1_start { table_num = int(C.g_side_info.table_select[gr][ch][0]) } else if is_pos < region_2_start { table_num = int(C.g_side_info.table_select[gr][ch][1]) } else { table_num = int(C.g_side_info.table_select[gr][ch][2]) } /* Get next Huffman coded words */ x, y, _, _, err := huffmanDecode(table_num) if err != nil { return err } /* In the big_values area there are two freq lines per Huffman word */ C.g_main_data.is[gr][ch][is_pos] = C.float(x) is_pos++ C.g_main_data.is[gr][ch][is_pos] = C.float(y) } /* Read small values until is_pos = 576 or we run out of huffman data */ table_num := int(C.g_side_info.count1table_select[gr][ch]) + 32 is_pos := int(C.g_side_info.big_values[gr][ch]) * 2 for ; (is_pos <= 572) && (int(Get_Main_Pos()) <= bit_pos_end); is_pos++ { /* Get next Huffman coded words */ x, y, v, w, err := huffmanDecode(table_num) if err != nil { return err } C.g_main_data.is[gr][ch][is_pos] = C.float(v) is_pos++ if is_pos >= 576 { break } C.g_main_data.is[gr][ch][is_pos] = C.float(w) is_pos++ if is_pos >= 576 { break } C.g_main_data.is[gr][ch][is_pos] = C.float(x) is_pos++ if is_pos >= 576 { break } C.g_main_data.is[gr][ch][is_pos] = C.float(y) } /* Check that we didn't read past the end of this section */ if int(C.Get_Main_Pos()) > (bit_pos_end + 1) { /* Remove last words read */ is_pos -= 4 } /* Setup count1 which is the index of the first sample in the rzero reg. */ C.g_side_info.count1[gr][ch] = C.unsigned(is_pos) /* Zero out the last part if necessary */ for ; /* is_pos comes from last for-loop */ is_pos < 576; is_pos++ { C.g_main_data.is[gr][ch][is_pos] = 0.0 } /* Set the bitpos to point to the next part to read */ C.Set_Main_Pos(C.unsigned(bit_pos_end) + 1) return nil }