// Copyright 2015 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package audio provides audio players. This can be used with or without ebiten package. // // The stream format must be 16-bit little endian and 2 channels. // // An audio context has a sample rate you can set and all streams you want to play must have the same // sample rate. However, decoders like audio/vorbis and audio/wav adjust sample rate, // and you don't have to care about it as long as you use those decoders. // // An audio context can generate 'players' (instances of audio.Player), // and you can play sound by calling Play function of players. // When multiple players play, mixing is automatically done. // Note that too many players may cause distortion. package audio import ( "bytes" "errors" "io" "runtime" "sync" "time" "github.com/hajimehoshi/ebiten" "github.com/hajimehoshi/oto" ) type players struct { players map[*Player]struct{} sync.RWMutex } const ( channelNum = 2 bytesPerSample = 2 // TODO: This assumes that channelNum is a power of 2. mask = ^(channelNum*bytesPerSample - 1) ) func min(a, b int) int { if a < b { return a } return b } func (p *players) Read(b []uint8) (int, error) { p.Lock() defer p.Unlock() players := []*Player{} for player := range p.players { players = append(players, player) } if len(players) == 0 { l := len(b) l &= mask copy(b, make([]uint8, l)) return l, nil } closed := []*Player{} l := len(b) for _, player := range players { n, err := player.readToBuffer(l) if err == io.EOF { closed = append(closed, player) } else if err != nil { return 0, err } l = min(n, l) } l &= mask b16s := [][]int16{} for _, player := range players { b16s = append(b16s, player.bufferToInt16(l)) } for i := 0; i < l/2; i++ { x := 0 for _, b16 := range b16s { x += int(b16[i]) } if x > (1<<15)-1 { x = (1 << 15) - 1 } if x < -(1 << 15) { x = -(1 << 15) } b[2*i] = byte(x) b[2*i+1] = byte(x >> 8) } for _, player := range players { player.proceed(l) } for _, pl := range closed { delete(p.players, pl) } return l, nil } func (p *players) addPlayer(player *Player) { p.Lock() p.players[player] = struct{}{} p.Unlock() } func (p *players) removePlayer(player *Player) { p.Lock() delete(p.players, player) p.Unlock() } func (p *players) hasPlayer(player *Player) bool { p.RLock() _, ok := p.players[player] p.RUnlock() return ok } func (p *players) hasSource(src ReadSeekCloser) bool { p.RLock() defer p.RUnlock() for player := range p.players { if player.src == src { return true } } return false } // A Context is a current state of audio. // // There should be at most one Context object. // This means only one constant sample rate is valid in your one application. // // The typical usage with ebiten package is: // // var audioContext *audio.Context // // func update(screen *ebiten.Image) error { // // Update updates the audio stream by 1/60 [sec]. // if err := audioContext.Update(); err != nil { // return err // } // // ... // } // // func main() { // audioContext, err = audio.NewContext(sampleRate) // if err != nil { // panic(err) // } // ebiten.Run(run, update, 320, 240, 2, "Audio test") // } // // This is 'sync mode' in that game's (logical) time and audio time are synchronized. // You can also call Update independently from the game loop as 'async mode'. // In this case, audio goes on even when the game stops e.g. by diactivating the screen. type Context struct { players *players playerWriteCh chan []uint8 playerErrCh chan error playerCloseCh chan struct{} sampleRate int frames int64 writtenBytes int64 } var ( theContext *Context theContextLock sync.Mutex ) // NewContext creates a new audio context with the given sample rate (e.g. 44100). // // Error returned by NewContext is always nil as of 1.5.0-alpha. // // NewContext panics when an audio context is already created. func NewContext(sampleRate int) (*Context, error) { theContextLock.Lock() defer theContextLock.Unlock() if theContext != nil { panic("audio: context is already created") } c := &Context{ sampleRate: sampleRate, } theContext = c c.players = &players{ players: map[*Player]struct{}{}, } return c, nil } // Update proceeds the inner (logical) time of the context by 1/60 second. // // This is expected to be called in the game's updating function (sync mode) // or an independent goroutine with timers (async mode). // In sync mode, the game logical time syncs the audio logical time and // you will find audio stops when the game stops e.g. when the window is deactivated. // In async mode, the audio never stops even when the game stops. // // Update returns error when IO error occurs in the underlying IO object. func (c *Context) Update() error { // Initialize oto.Player lazily to enable calling NewContext in an 'init' function. // Accessing oto.Player functions requires the environment to be already initialized, // but if Ebiten is used for a shared library, the timing when init functions are called // is unexpectable. // e.g. a variable for JVM on Android might not be set. if c.playerWriteCh == nil { init := make(chan error) c.playerWriteCh = make(chan []uint8) c.playerErrCh = make(chan error, 1) c.playerCloseCh = make(chan struct{}) go func() { // The buffer size is 1/15 sec. // It looks like 1/20 sec is too short for Android. s := c.sampleRate * channelNum * bytesPerSample / 15 p, err := oto.NewPlayer(c.sampleRate, channelNum, bytesPerSample, s) if err != nil { init <- err return } defer p.Close() close(init) for { select { case buf := <-c.playerWriteCh: if _, err = p.Write(buf); err != nil { c.playerErrCh <- err } case <-c.playerCloseCh: return } } }() if err := <-init; err != nil { return err } } select { case err := <-c.playerErrCh: close(c.playerCloseCh) return err default: } c.frames++ bytesPerFrame := c.sampleRate * bytesPerSample * channelNum / ebiten.FPS l := (c.frames * int64(bytesPerFrame)) - c.writtenBytes l &= mask c.writtenBytes += l buf := make([]uint8, l) if _, err := io.ReadFull(c.players, buf); err != nil { close(c.playerCloseCh) return err } select { case c.playerWriteCh <- buf: // Writing can block. Don't wait for the result here. default: } return nil } // SampleRate returns the sample rate. func (c *Context) SampleRate() int { return c.sampleRate } // ReadSeekCloser is an io.ReadSeeker and io.Closer. type ReadSeekCloser interface { io.ReadSeeker io.Closer } type bytesReadSeekCloser struct { reader *bytes.Reader } func (b *bytesReadSeekCloser) Read(buf []uint8) (int, error) { return b.reader.Read(buf) } func (b *bytesReadSeekCloser) Seek(offset int64, whence int) (int64, error) { return b.reader.Seek(offset, whence) } func (b *bytesReadSeekCloser) Close() error { b.reader = nil return nil } // BytesReadSeekCloser creates ReadSeekCloser from bytes. // // A returned stream is concurrent safe. func BytesReadSeekCloser(b []uint8) ReadSeekCloser { return &bytesReadSeekCloser{reader: bytes.NewReader(b)} } type readingResult struct { data []uint8 err error } // Player is an audio player which has one stream. type Player struct { players *players src ReadSeekCloser sampleRate int readingCh chan readingResult seekCh chan int64 buf []uint8 pos int64 volume float64 srcM sync.Mutex m sync.RWMutex } // NewPlayer creates a new player with the given stream. // // src's format must be linear PCM (16bits little endian, 2 channel stereo) // without a header (e.g. RIFF header). // The sample rate must be same as that of the audio context. // // Note that the given src can't be shared with other Players. // // NewPlayer tries to rewind src by calling Seek to get the current position. // NewPlayer returns error when the Seek returns error. func NewPlayer(context *Context, src ReadSeekCloser) (*Player, error) { if context.players.hasSource(src) { return nil, errors.New("audio: src cannot be shared with another Player") } p := &Player{ players: context.players, src: src, sampleRate: context.sampleRate, seekCh: make(chan int64, 1), buf: []uint8{}, volume: 1, } // Get the current position of the source. pos, err := p.src.Seek(0, io.SeekCurrent) if err != nil { return nil, err } p.pos = pos runtime.SetFinalizer(p, (*Player).Close) return p, nil } // NewPlayerFromBytes creates a new player with the given bytes. // // As opposed to NewPlayer, you don't have to care if src is already used by another player or not. // src can be shared by multiple players. // // The format of src should be same as noted at NewPlayer. // // NewPlayerFromBytes's error is always nil as of 1.5.0-alpha. func NewPlayerFromBytes(context *Context, src []uint8) (*Player, error) { b := BytesReadSeekCloser(src) p, err := NewPlayer(context, b) if err != nil { // Errors should never happen. panic(err) } return p, nil } // Close closes the stream. Ths source stream passed by NewPlayer will also be closed. // // When closing, the stream owned by the player will also be closed by calling its Close. // // Close is concurrent safe. // // Close returns error when closing the source returns error. func (p *Player) Close() error { p.players.removePlayer(p) runtime.SetFinalizer(p, nil) p.srcM.Lock() err := p.src.Close() p.srcM.Unlock() return err } func (p *Player) readToBuffer(length int) (int, error) { if p.readingCh == nil { p.readingCh = make(chan readingResult) go func() { defer close(p.readingCh) b := make([]uint8, length) p.srcM.Lock() n, err := p.src.Read(b) p.srcM.Unlock() if err != nil { p.readingCh <- readingResult{ err: err, } return } p.readingCh <- readingResult{ data: b[:n], } }() } select { case pos := <-p.seekCh: p.buf = []uint8{} p.pos = pos return 0, nil case r := <-p.readingCh: if r.err != nil { return 0, r.err } if len(r.data) > 0 { p.buf = append(p.buf, r.data...) } p.readingCh = nil return len(p.buf), nil case <-time.After(15 * time.Millisecond): return length, nil } } func (p *Player) bufferToInt16(lengthInBytes int) []int16 { r := make([]int16, lengthInBytes/2) // This function must be called on the same goruotine of readToBuffer. if p.readingCh != nil { return r } p.m.RLock() for i := 0; i < lengthInBytes/2; i++ { r[i] = int16(p.buf[2*i]) | (int16(p.buf[2*i+1]) << 8) r[i] = int16(float64(r[i]) * p.volume) } p.m.RUnlock() return r } func (p *Player) proceed(length int) { // This function must be called on the same goruotine of readToBuffer. if p.readingCh != nil { return } p.buf = p.buf[length:] p.pos += int64(length) } // Play plays the stream. // // Play always returns nil. // // Play is concurrent safe. func (p *Player) Play() error { p.players.addPlayer(p) return nil } // IsPlaying returns boolean indicating whether the player is playing. // // IsPlaying is concurrent safe. func (p *Player) IsPlaying() bool { return p.players.hasPlayer(p) } // Rewind rewinds the current position to the start. // // Rewind is concurrent safe. // // Rewind returns error when seeking the source returns error. func (p *Player) Rewind() error { return p.Seek(0) } // Seek seeks the position with the given offset. // // Seek is concurrent safe. // // Seek returns error when seeking the source returns error. func (p *Player) Seek(offset time.Duration) error { o := int64(offset) * bytesPerSample * channelNum * int64(p.sampleRate) / int64(time.Second) o &= mask p.srcM.Lock() pos, err := p.src.Seek(o, io.SeekStart) p.srcM.Unlock() if err != nil { return err } // When the player p is not playing, as readToBuffer is never called, // seekCh will never solved. // Solve the current seeking here if necessary. select { case pos := <-p.seekCh: p.buf = []uint8{} p.pos = pos default: } p.seekCh <- pos return nil } // Pause pauses the playing. // // Pause is concurrent safe. // // Pause always returns nil. func (p *Player) Pause() error { p.players.removePlayer(p) return nil } // Current returns the current position. // // Current is concurrent safe. func (p *Player) Current() time.Duration { p.m.RLock() sample := p.pos / bytesPerSample / channelNum t := time.Duration(sample) * time.Second / time.Duration(p.sampleRate) p.m.RUnlock() return t } // Volume returns the current volume of this player [0-1]. // // Volume is concurrent safe. func (p *Player) Volume() float64 { p.m.RLock() v := p.volume p.m.RUnlock() return v } // SetVolume sets the volume of this player. // volume must be in between 0 and 1. This function panics otherwise. // // SetVolume is concurrent safe. func (p *Player) SetVolume(volume float64) { p.m.Lock() defer p.m.Unlock() // The condition must be true when volume is NaN. if !(0 <= volume && volume <= 1) { panic("audio: volume must be in between 0 and 1") } p.volume = volume }