// Copyright 2017 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // +build !js package mp3 import ( "fmt" "io" ) func readCRC() error { buf := make([]int, 2) n := 0 var err error for n < 2 && err == nil { nn, err2 := getBytes(buf[n:]) n += nn err = err2 } if err == io.EOF { if n < 2 { return fmt.Errorf("mp3: unexpected EOF at readCRC") } return nil } if err != nil { return err } return nil } func readFrame() (*frame, error) { f := &frame{} if err := f.readHeader(); err != nil { return nil, err } // Get CRC word if present if f.header.protection_bit == 0 { if err := readCRC(); err != nil { return nil, err } } if f.header.layer != mpeg1Layer3 { return nil, fmt.Errorf("mp3: only layer3 (want %d; got %d) is supported!", mpeg1Layer3, f.header.layer) } // Get side info if err := f.readAudioL3(); err != nil { return nil, err } // If there's not enough main data in the bit reservoir, // signal to calling function so that decoding isn't done! // Get main data(scalefactors and Huffman coded frequency data) if err := f.readMainL3(); err != nil { return nil, err } return f, nil } func isHeader(header uint32) bool { const C_SYNC = 0xffe00000 if (header & C_SYNC) != C_SYNC { return false } // Bitrate must not be 15. if (header & (0xf << 12)) == 0xf<<12 { return false } // Sample Frequency must not be 3. if (header & (3 << 10)) == 3<<10 { return false } return true } func (f *frame) readHeader() error { /* Get the next four bytes from the bitstream */ buf := make([]int, 4) n := 0 var err error for n < 4 && err == nil { nn, err2 := getBytes(buf[n:]) n += nn err = err2 } if n < 4 { if err == io.EOF { if n == 0 { return eof } return fmt.Errorf("mp3: unexpected EOF at readHeader") } return err } b1 := uint32(buf[0]) b2 := uint32(buf[1]) b3 := uint32(buf[2]) b4 := uint32(buf[3]) header := (b1 << 24) | (b2 << 16) | (b3 << 8) | (b4 << 0) for !isHeader(uint32(header)) { /* No,so scan the bitstream one byte at a time until we find it or EOF */ /* Shift the values one byte to the left */ b1 = b2 b2 = b3 b3 = b4 /* Get one new byte from the bitstream */ b, err := getByte() if err != nil { if err == io.EOF { return fmt.Errorf("mp3: unexpected EOF at readHeader") } return err } b4 = uint32(b) header = (b1 << 24) | (b2 << 16) | (b3 << 8) | (b4 << 0) } /* while... */ /* If we get here we've found the sync word,and can decode the header * which is in the low 20 bits of the 32-bit sync+header word. */ /* Decode the header */ f.header.id = int((header & 0x00180000) >> 19) f.header.layer = mpeg1Layer((header & 0x00060000) >> 17) f.header.protection_bit = int((header & 0x00010000) >> 16) f.header.bitrate_index = int((header & 0x0000f000) >> 12) f.header.sampling_frequency = int((header & 0x00000c00) >> 10) f.header.padding_bit = int((header & 0x00000200) >> 9) f.header.private_bit = int((header & 0x00000100) >> 8) f.header.mode = mpeg1Mode((header & 0x000000c0) >> 6) f.header.mode_extension = int((header & 0x00000030) >> 4) f.header.copyright = int((header & 0x00000008) >> 3) f.header.original_or_copy = int((header & 0x00000004) >> 2) f.header.emphasis = int((header & 0x00000003) >> 0) /* Check for invalid values and impossible combinations */ if f.header.id != 3 { return fmt.Errorf("mp3: ID must be 3. Header word is 0x%08x at file pos %d", header, getFilepos()) } if f.header.bitrate_index == 0 { return fmt.Errorf("mp3: Free bitrate format NIY! Header word is 0x%08x at file pos %d", header, getFilepos()) } if f.header.bitrate_index == 15 { return fmt.Errorf("mp3: bitrate_index = 15 is invalid! Header word is 0x%08x at file pos %d", header, getFilepos()) } if f.header.sampling_frequency == 3 { return fmt.Errorf("mp3: sampling_frequency = 3 is invalid! Header word is 0x%08x at file pos %d", header, getFilepos()) } if f.header.layer == mpeg1LayerReserved { return fmt.Errorf("mp3: layer = %d is invalid! Header word is 0x%08x at file pos %d", mpeg1LayerReserved, header, getFilepos()) } return nil } func (f *frame) readHuffman(part_2_start, gr, ch int) error { /* Check that there is any data to decode. If not,zero the array. */ if f.sideInfo.part2_3_length[gr][ch] == 0 { for is_pos := 0; is_pos < 576; is_pos++ { f.mainData.is[gr][ch][is_pos] = 0.0 } return nil } /* Calculate bit_pos_end which is the index of the last bit for this part. */ bit_pos_end := part_2_start + f.sideInfo.part2_3_length[gr][ch] - 1 /* Determine region boundaries */ region_1_start := 0 region_2_start := 0 if (f.sideInfo.win_switch_flag[gr][ch] == 1) && (f.sideInfo.block_type[gr][ch] == 2) { region_1_start = 36 /* sfb[9/3]*3=36 */ region_2_start = 576 /* No Region2 for short block case. */ } else { sfreq := f.header.sampling_frequency region_1_start = sfBandIndicesSet[sfreq].l[f.sideInfo.region0_count[gr][ch]+1] region_2_start = sfBandIndicesSet[sfreq].l[f.sideInfo.region0_count[gr][ch]+ f.sideInfo.region1_count[gr][ch]+2] } /* Read big_values using tables according to region_x_start */ for is_pos := 0; is_pos < f.sideInfo.big_values[gr][ch]*2; is_pos++ { table_num := 0 if is_pos < region_1_start { table_num = f.sideInfo.table_select[gr][ch][0] } else if is_pos < region_2_start { table_num = f.sideInfo.table_select[gr][ch][1] } else { table_num = f.sideInfo.table_select[gr][ch][2] } /* Get next Huffman coded words */ x, y, _, _, err := huffmanDecode(table_num) if err != nil { return err } /* In the big_values area there are two freq lines per Huffman word */ f.mainData.is[gr][ch][is_pos] = float32(x) is_pos++ f.mainData.is[gr][ch][is_pos] = float32(y) } /* Read small values until is_pos = 576 or we run out of huffman data */ table_num := f.sideInfo.count1table_select[gr][ch] + 32 is_pos := f.sideInfo.big_values[gr][ch] * 2 for ; (is_pos <= 572) && (getMainPos() <= bit_pos_end); is_pos++ { /* Get next Huffman coded words */ x, y, v, w, err := huffmanDecode(table_num) if err != nil { return err } f.mainData.is[gr][ch][is_pos] = float32(v) is_pos++ if is_pos >= 576 { break } f.mainData.is[gr][ch][is_pos] = float32(w) is_pos++ if is_pos >= 576 { break } f.mainData.is[gr][ch][is_pos] = float32(x) is_pos++ if is_pos >= 576 { break } f.mainData.is[gr][ch][is_pos] = float32(y) } /* Check that we didn't read past the end of this section */ if getMainPos() > (bit_pos_end + 1) { /* Remove last words read */ is_pos -= 4 } /* Setup count1 which is the index of the first sample in the rzero reg. */ f.sideInfo.count1[gr][ch] = is_pos /* Zero out the last part if necessary */ for ; /* is_pos comes from last for-loop */ is_pos < 576; is_pos++ { f.mainData.is[gr][ch][is_pos] = 0.0 } /* Set the bitpos to point to the next part to read */ setMainPos(bit_pos_end + 1) return nil }