// Copyright 2014 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package opengl import ( "fmt" "regexp" "strings" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" ) // glslReservedKeywords is a set of reserved keywords that cannot be used as an indentifier on some environments. // See https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf. var glslReservedKeywords = map[string]struct{}{ "common": {}, "partition": {}, "active": {}, "asm": {}, "class": {}, "union": {}, "enum": {}, "typedef": {}, "template": {}, "this": {}, "resource": {}, "goto": {}, "inline": {}, "noinline": {}, "public": {}, "static": {}, "extern": {}, "external": {}, "interface": {}, "long": {}, "short": {}, "half": {}, "fixed": {}, "unsigned": {}, "superp": {}, "input": {}, "output": {}, "hvec2": {}, "hvec3": {}, "hvec4": {}, "fvec2": {}, "fvec3": {}, "fvec4": {}, "filter": {}, "sizeof": {}, "cast": {}, "namespace": {}, "using": {}, "sampler3DRect": {}, } var glslIdentifier = regexp.MustCompile(`[_a-zA-Z][_a-zA-Z0-9]*`) func checkGLSL(src string) { for _, l := range strings.Split(src, "\n") { if strings.Contains(l, "//") { l = l[:strings.Index(l, "//")] } for _, token := range glslIdentifier.FindAllString(l, -1) { if _, ok := glslReservedKeywords[token]; ok { panic(fmt.Sprintf("opengl: %q is a reserved keyword", token)) } } } } func vertexShaderStr() string { src := shaderStrVertex checkGLSL(src) return src } func fragmentShaderStr(useColorM bool, filter graphicsdriver.Filter, address graphicsdriver.Address) string { replaces := map[string]string{ "{{.AddressClampToZero}}": fmt.Sprintf("%d", graphicsdriver.AddressClampToZero), "{{.AddressRepeat}}": fmt.Sprintf("%d", graphicsdriver.AddressRepeat), "{{.AddressUnsafe}}": fmt.Sprintf("%d", graphicsdriver.AddressUnsafe), } src := shaderStrFragment for k, v := range replaces { src = strings.Replace(src, k, v, -1) } var defs []string if useColorM { defs = append(defs, "#define USE_COLOR_MATRIX") } switch filter { case graphicsdriver.FilterNearest: defs = append(defs, "#define FILTER_NEAREST") case graphicsdriver.FilterLinear: defs = append(defs, "#define FILTER_LINEAR") case graphicsdriver.FilterScreen: defs = append(defs, "#define FILTER_SCREEN") default: panic(fmt.Sprintf("opengl: invalid filter: %d", filter)) } switch address { case graphicsdriver.AddressClampToZero: defs = append(defs, "#define ADDRESS_CLAMP_TO_ZERO") case graphicsdriver.AddressRepeat: defs = append(defs, "#define ADDRESS_REPEAT") case graphicsdriver.AddressUnsafe: defs = append(defs, "#define ADDRESS_UNSAFE") default: panic(fmt.Sprintf("opengl: invalid address: %d", address)) } src = strings.Replace(src, "{{.Definitions}}", strings.Join(defs, "\n"), -1) checkGLSL(src) return src } const ( shaderStrVertex = ` uniform vec2 viewport_size; attribute vec2 A0; attribute vec2 A1; attribute vec4 A2; varying vec2 varying_tex; varying vec4 varying_color_scale; void main(void) { varying_tex = A1; // Fragment shader wants premultiplied alpha. varying_color_scale = vec4(A2.rgb, 1) * A2.a; mat4 projection_matrix = mat4( vec4(2.0 / viewport_size.x, 0, 0, 0), vec4(0, 2.0 / viewport_size.y, 0, 0), vec4(0, 0, 1, 0), vec4(-1, -1, 0, 1) ); gl_Position = projection_matrix * vec4(A0, 0, 1); } ` shaderStrFragment = ` #if defined(GL_ES) precision mediump float; #else #define lowp #define mediump #define highp #endif {{.Definitions}} uniform sampler2D T0; uniform vec4 source_region; #if defined(USE_COLOR_MATRIX) uniform mat4 color_matrix_body; uniform vec4 color_matrix_translation; #endif uniform highp vec2 source_size; #if defined(FILTER_SCREEN) uniform highp float scale; #endif varying highp vec2 varying_tex; varying highp vec4 varying_color_scale; highp vec2 adjustTexelByAddress(highp vec2 p, highp vec4 source_region) { #if defined(ADDRESS_CLAMP_TO_ZERO) return p; #endif #if defined(ADDRESS_REPEAT) highp vec2 o = vec2(source_region[0], source_region[1]); highp vec2 size = vec2(source_region[2] - source_region[0], source_region[3] - source_region[1]); return vec2(mod((p.x - o.x), size.x) + o.x, mod((p.y - o.y), size.y) + o.y); #endif #if defined(ADDRESS_UNSAFE) return p; #endif } void main(void) { highp vec2 pos = varying_tex; #if defined(FILTER_NEAREST) vec4 color; # if defined(ADDRESS_UNSAFE) color = texture2D(T0, pos); # else pos = adjustTexelByAddress(pos, source_region); if (source_region[0] <= pos.x && source_region[1] <= pos.y && pos.x < source_region[2] && pos.y < source_region[3]) { color = texture2D(T0, pos); } else { color = vec4(0, 0, 0, 0); } # endif // defined(ADDRESS_UNSAFE) #endif // defined(FILTER_NEAREST) #if defined(FILTER_LINEAR) vec4 color; highp vec2 texel_size = 1.0 / source_size; // Shift 1/512 [texel] to avoid the tie-breaking issue. // As all the vertex positions are aligned to 1/16 [pixel], this shiting should work in most cases. highp vec2 p0 = pos - (texel_size) / 2.0 + (texel_size / 512.0); highp vec2 p1 = pos + (texel_size) / 2.0 + (texel_size / 512.0); # if !defined(ADDRESS_UNSAFE) p0 = adjustTexelByAddress(p0, source_region); p1 = adjustTexelByAddress(p1, source_region); # endif // defined(ADDRESS_UNSAFE) vec4 c0 = texture2D(T0, p0); vec4 c1 = texture2D(T0, vec2(p1.x, p0.y)); vec4 c2 = texture2D(T0, vec2(p0.x, p1.y)); vec4 c3 = texture2D(T0, p1); # if !defined(ADDRESS_UNSAFE) if (p0.x < source_region[0]) { c0 = vec4(0, 0, 0, 0); c2 = vec4(0, 0, 0, 0); } if (p0.y < source_region[1]) { c0 = vec4(0, 0, 0, 0); c1 = vec4(0, 0, 0, 0); } if (source_region[2] <= p1.x) { c1 = vec4(0, 0, 0, 0); c3 = vec4(0, 0, 0, 0); } if (source_region[3] <= p1.y) { c2 = vec4(0, 0, 0, 0); c3 = vec4(0, 0, 0, 0); } # endif // defined(ADDRESS_UNSAFE) vec2 rate = fract(p0 * source_size); color = mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y); #endif // defined(FILTER_LINEAR) #if defined(FILTER_SCREEN) highp vec2 texel_size = 1.0 / source_size; highp vec2 half_scaled_texel_size = texel_size / 2.0 / scale; highp vec2 p0 = pos - half_scaled_texel_size + (texel_size / 512.0); highp vec2 p1 = pos + half_scaled_texel_size + (texel_size / 512.0); vec4 c0 = texture2D(T0, p0); vec4 c1 = texture2D(T0, vec2(p1.x, p0.y)); vec4 c2 = texture2D(T0, vec2(p0.x, p1.y)); vec4 c3 = texture2D(T0, p1); // Texels must be in the source rect, so it is not necessary to check that like linear filter. vec2 rate_center = vec2(1.0, 1.0) - half_scaled_texel_size; vec2 rate = clamp(((fract(p0 * source_size) - rate_center) * scale) + rate_center, 0.0, 1.0); gl_FragColor = mix(mix(c0, c1, rate.x), mix(c2, c3, rate.x), rate.y); // Assume that a color matrix and color vector values are not used with FILTER_SCREEN. #else # if defined(USE_COLOR_MATRIX) // Un-premultiply alpha. // When the alpha is 0, 1.0 - sign(alpha) is 1.0, which means division does nothing. color.rgb /= color.a + (1.0 - sign(color.a)); // Apply the color matrix or scale. color = (color_matrix_body * color) + color_matrix_translation; // Premultiply alpha color.rgb *= color.a; // Apply color scale. color *= varying_color_scale; // Clamp the output. color.rgb = min(color.rgb, color.a); # else // Apply color scale. color *= varying_color_scale; // No clamping needed as the color matrix shader is used then. # endif // defined(USE_COLOR_MATRIX) gl_FragColor = color; #endif // defined(FILTER_SCREEN) } ` )