// Copyright 2014 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ebiten import ( "fmt" "image" "image/color" "github.com/hajimehoshi/ebiten/v2/internal/affine" "github.com/hajimehoshi/ebiten/v2/internal/atlas" "github.com/hajimehoshi/ebiten/v2/internal/builtinshader" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" "github.com/hajimehoshi/ebiten/v2/internal/ui" ) // Image represents a rectangle set of pixels. // The pixel format is alpha-premultiplied RGBA. // Image implements the standard image.Image and draw.Image interfaces. type Image struct { // addr holds self to check copying. // See strings.Builder for similar examples. addr *Image image *ui.Image original *Image bounds image.Rectangle // Do not add a 'buffering' member that are resolved lazily. // This tends to forget resolving the buffer easily (#2362). } var emptyImage *Image func init() { img := NewImage(3, 3) img.Fill(color.White) emptyImage = img.SubImage(image.Rect(1, 1, 2, 2)).(*Image) } func (i *Image) copyCheck() { if i.addr != i { panic("ebiten: illegal use of non-zero Image copied by value") } } // Size returns the size of the image. func (i *Image) Size() (width, height int) { s := i.Bounds().Size() return s.X, s.Y } func (i *Image) isDisposed() bool { return i.image == nil } func (i *Image) isSubImage() bool { return i.original != nil } // Clear resets the pixels of the image into 0. // // When the image is disposed, Clear does nothing. func (i *Image) Clear() { i.Fill(color.Transparent) } // Fill fills the image with a solid color. // // When the image is disposed, Fill does nothing. func (i *Image) Fill(clr color.Color) { i.copyCheck() if i.isDisposed() { return } var crf, cgf, cbf, caf float32 cr, cg, cb, ca := clr.RGBA() crf = float32(cr) / 0xffff cgf = float32(cg) / 0xffff cbf = float32(cb) / 0xffff caf = float32(ca) / 0xffff b := i.Bounds() x, y := i.adjustPosition(b.Min.X, b.Min.Y) i.image.Fill(crf, cgf, cbf, caf, x, y, b.Dx(), b.Dy()) } func canSkipMipmap(geom GeoM, filter builtinshader.Filter) bool { if filter != builtinshader.FilterLinear { return true } return geom.det2x2() >= 0.999 } // DrawImageOptions represents options for DrawImage. type DrawImageOptions struct { // GeoM is a geometry matrix to draw. // The default (zero) value is identity, which draws the image at (0, 0). GeoM GeoM // ColorM is a color matrix to draw. // The default (zero) value is identity, which doesn't change any color. ColorM ColorM // CompositeMode is a composite mode to draw. // The default (zero) value is regular alpha blending. CompositeMode CompositeMode // Filter is a type of texture filter. // The default (zero) value is FilterNearest. Filter Filter } // adjustPosition converts the position in the *ebiten.Image coordinate to the *ui.Image coordinate. func (i *Image) adjustPosition(x, y int) (int, int) { if i.isSubImage() { or := i.original.Bounds() x -= or.Min.X y -= or.Min.Y return x, y } r := i.Bounds() x -= r.Min.X y -= r.Min.Y return x, y } // adjustPositionF32 converts the position in the *ebiten.Image coordinate to the *ui.Image coordinate. func (i *Image) adjustPositionF32(x, y float32) (float32, float32) { if i.isSubImage() { or := i.original.Bounds() x -= float32(or.Min.X) y -= float32(or.Min.Y) return x, y } r := i.Bounds() x -= float32(r.Min.X) y -= float32(r.Min.Y) return x, y } func (i *Image) adjustedRegion() graphicsdriver.Region { b := i.Bounds() x, y := i.adjustPosition(b.Min.X, b.Min.Y) return graphicsdriver.Region{ X: float32(x), Y: float32(y), Width: float32(b.Dx()), Height: float32(b.Dy()), } } // DrawImage draws the given image on the image i. // // DrawImage accepts the options. For details, see the document of // DrawImageOptions. // // For drawing, the pixels of the argument image at the time of this call is // adopted. Even if the argument image is mutated after this call, the drawing // result is never affected. // // When the image i is disposed, DrawImage does nothing. // When the given image img is disposed, DrawImage panics. // // When the given image is as same as i, DrawImage panics. // // DrawImage works more efficiently as batches // when the successive calls of DrawImages satisfy the below conditions: // // - All render targets are same (A in A.DrawImage(B, op)) // - Either all ColorM element values are same or all the ColorM have only // diagonal ('scale') elements // - If only (*ColorM).Scale is applied to a ColorM, the ColorM has only // diagonal elements. The other ColorM functions might modify the other // elements. // - All CompositeMode values are same // - All Filter values are same // // Even when all the above conditions are satisfied, multiple draw commands can // be used in really rare cases. Ebitengine images usually share an internal // automatic texture atlas, but when you consume the atlas, or you create a huge // image, those images cannot be on the same texture atlas. In this case, draw // commands are separated. // Another case is when you use an offscreen as a render source. An offscreen // doesn't share the texture atlas with high probability. // // For more performance tips, see https://ebitengine.org/en/documents/performancetips.html func (i *Image) DrawImage(img *Image, options *DrawImageOptions) { i.copyCheck() if img.isDisposed() { panic("ebiten: the given image to DrawImage must not be disposed") } if i.isDisposed() { return } // Calculate vertices before locking because the user can do anything in // options.ImageParts interface without deadlock (e.g. Call Image functions). if options == nil { options = &DrawImageOptions{} } blend := options.CompositeMode.blend() filter := builtinshader.Filter(options.Filter) if offsetX, offsetY := i.adjustPosition(0, 0); offsetX != 0 || offsetY != 0 { options.GeoM.Translate(float64(offsetX), float64(offsetY)) } a, b, c, d, tx, ty := options.GeoM.elements32() bounds := img.Bounds() sx0, sy0 := img.adjustPosition(bounds.Min.X, bounds.Min.Y) sx1, sy1 := img.adjustPosition(bounds.Max.X, bounds.Max.Y) colorm, cr, cg, cb, ca := colorMToScale(options.ColorM.affineColorM()) vs := graphics.QuadVertices(float32(sx0), float32(sy0), float32(sx1), float32(sy1), a, b, c, d, tx, ty, cr, cg, cb, ca) is := graphics.QuadIndices() srcs := [graphics.ShaderImageCount]*ui.Image{img.image} useColorM := !colorm.IsIdentity() shader := builtinShader(filter, builtinshader.AddressUnsafe, useColorM) var uniforms [][]float32 if useColorM { var body [16]float32 var translation [4]float32 colorm.Elements(body[:], translation[:]) uniforms = shader.convertUniforms(map[string]interface{}{ builtinshader.UniformColorMBody: body[:], builtinshader.UniformColorMTranslation: translation[:], }) } i.image.DrawTriangles(srcs, vs, is, blend, i.adjustedRegion(), graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, shader.shader, uniforms, false, canSkipMipmap(options.GeoM, filter)) } // Vertex represents a vertex passed to DrawTriangles. type Vertex struct { // DstX and DstY represents a point on a destination image. DstX float32 DstY float32 // SrcX and SrcY represents a point on a source image. // Be careful that SrcX/SrcY coordinates are on the image's bounds. // This means that a upper-left point of a sub-image might not be (0, 0). SrcX float32 SrcY float32 // ColorR/ColorG/ColorB/ColorA represents color scaling values. // Their interpretation depends on the concrete draw call used: // - DrawTriangles: straight-alpha or premultiplied-alpha encoded color multiplier. // The format is determined by ColorScaleFormat in DrawTrianglesOptions. // If ColorA is 0, the vertex is fully transparent and color is ignored. // If ColorA is 1, the vertex has the color (ColorR, ColorG, ColorB). // Vertex colors are converted to premultiplied-alpha internally and // interpolated linearly respecting alpha. // - DrawTrianglesShader: arbitrary floating point values sent to the shader. // These are interpolated linearly and independently from each other. ColorR float32 ColorG float32 ColorB float32 ColorA float32 } // Address represents a sampler address mode. type Address int const ( // AddressUnsafe means there is no guarantee when the texture coodinates are out of range. AddressUnsafe Address = Address(builtinshader.AddressUnsafe) // AddressClampToZero means that out-of-range texture coordinates return 0 (transparent). AddressClampToZero Address = Address(builtinshader.AddressClampToZero) // AddressRepeat means that texture coordinates wrap to the other side of the texture. AddressRepeat Address = Address(builtinshader.AddressRepeat) ) // FillRule is the rule whether an overlapped region is rendered with DrawTriangles(Shader). type FillRule int const ( // FillAll indicates all the triangles are rendered regardless of overlaps. FillAll FillRule = iota // EvenOdd means that triangles are rendered based on the even-odd rule. // If and only if the number of overlappings is odd, the region is rendered. EvenOdd ) // ColorScaleFormat is the format of color scales in vertices. type ColorScaleFormat int const ( // ColorScaleFormatStraightAlpha indicates color scales in vertices are // straight-alpha encoded color multiplier. ColorScaleFormatStraightAlpha ColorScaleFormat = iota // ColorScaleFormatStraightAlpha indicates color scales in vertices are // premultiplied-alpha encoded color multiplier. ColorScaleFormatPremultipliedAlpha ) // DrawTrianglesOptions represents options for DrawTriangles. type DrawTrianglesOptions struct { // ColorM is a color matrix to draw. // The default (zero) value is identity, which doesn't change any color. // ColorM is applied before vertex color scale is applied. ColorM ColorM // ColorScaleFormat is the format of color scales in vertices. // The default (zero) value is ColorScaleFormatStraightAlpha. ColorScaleFormat ColorScaleFormat // CompositeMode is a composite mode to draw. // The default (zero) value is regular alpha blending. CompositeMode CompositeMode // Filter is a type of texture filter. // The default (zero) value is FilterNearest. Filter Filter // Address is a sampler address mode. // The default (zero) value is AddressUnsafe. Address Address // FillRule indicates the rule how an overlapped region is rendered. // // The rule EvenOdd is useful when you want to render a complex polygon. // A complex polygon is a non-convex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon. // See examples/vector for actual usages. // // The default (zero) value is FillAll. FillRule FillRule } // MaxIndicesCount is the maximum number of indices for DrawTriangles and DrawTrianglesShader. const MaxIndicesCount = graphics.IndicesCount // MaxIndicesNum is the maximum number of indices for DrawTriangles and DrawTrianglesShader. // // Deprecated: as of v2.4. Use MaxIndicesCount instead. const MaxIndicesNum = graphics.IndicesCount // DrawTriangles draws triangles with the specified vertices and their indices. // // img is used as a source image. img cannot be nil. // If you want to draw triangles with a solid color, use a small white image // and adjust the color elements in the vertices. For an actual implementation, // see the example 'vector'. // // Vertex contains color values, which are interpreted as straight-alpha colors. // // If len(indices) is not multiple of 3, DrawTriangles panics. // // If len(indices) is more than MaxIndicesCount, DrawTriangles panics. // // The rule in which DrawTriangles works effectively is same as DrawImage's. // // When the given image is disposed, DrawTriangles panics. // // When the image i is disposed, DrawTriangles does nothing. func (i *Image) DrawTriangles(vertices []Vertex, indices []uint16, img *Image, options *DrawTrianglesOptions) { i.copyCheck() if img != nil && img.isDisposed() { panic("ebiten: the given image to DrawTriangles must not be disposed") } if i.isDisposed() { return } if len(indices)%3 != 0 { panic("ebiten: len(indices) % 3 must be 0") } if len(indices) > MaxIndicesCount { panic("ebiten: len(indices) must be <= MaxIndicesCount") } // TODO: Check the maximum value of indices and len(vertices)? if options == nil { options = &DrawTrianglesOptions{} } blend := options.CompositeMode.blend() address := builtinshader.Address(options.Address) var sr graphicsdriver.Region if address != builtinshader.AddressUnsafe { sr = img.adjustedRegion() } filter := builtinshader.Filter(options.Filter) colorm, cr, cg, cb, ca := colorMToScale(options.ColorM.affineColorM()) vs := graphics.Vertices(len(vertices)) dst := i if options.ColorScaleFormat == ColorScaleFormatStraightAlpha { for i, v := range vertices { dx, dy := dst.adjustPositionF32(v.DstX, v.DstY) vs[i*graphics.VertexFloatCount] = dx vs[i*graphics.VertexFloatCount+1] = dy sx, sy := img.adjustPositionF32(v.SrcX, v.SrcY) vs[i*graphics.VertexFloatCount+2] = sx vs[i*graphics.VertexFloatCount+3] = sy vs[i*graphics.VertexFloatCount+4] = v.ColorR * v.ColorA * cr vs[i*graphics.VertexFloatCount+5] = v.ColorG * v.ColorA * cg vs[i*graphics.VertexFloatCount+6] = v.ColorB * v.ColorA * cb vs[i*graphics.VertexFloatCount+7] = v.ColorA * ca } } else { for i, v := range vertices { dx, dy := dst.adjustPositionF32(v.DstX, v.DstY) vs[i*graphics.VertexFloatCount] = dx vs[i*graphics.VertexFloatCount+1] = dy sx, sy := img.adjustPositionF32(v.SrcX, v.SrcY) vs[i*graphics.VertexFloatCount+2] = sx vs[i*graphics.VertexFloatCount+3] = sy vs[i*graphics.VertexFloatCount+4] = v.ColorR * cr vs[i*graphics.VertexFloatCount+5] = v.ColorG * cg vs[i*graphics.VertexFloatCount+6] = v.ColorB * cb vs[i*graphics.VertexFloatCount+7] = v.ColorA * ca } } is := make([]uint16, len(indices)) copy(is, indices) srcs := [graphics.ShaderImageCount]*ui.Image{img.image} useColorM := !colorm.IsIdentity() shader := builtinShader(filter, address, useColorM) var uniforms [][]float32 if useColorM { var body [16]float32 var translation [4]float32 colorm.Elements(body[:], translation[:]) uniforms = shader.convertUniforms(map[string]interface{}{ builtinshader.UniformColorMBody: body[:], builtinshader.UniformColorMTranslation: translation[:], }) } i.image.DrawTriangles(srcs, vs, is, blend, i.adjustedRegion(), sr, [graphics.ShaderImageCount - 1][2]float32{}, shader.shader, uniforms, options.FillRule == EvenOdd, filter != builtinshader.FilterLinear) } // DrawTrianglesShaderOptions represents options for DrawTrianglesShader. type DrawTrianglesShaderOptions struct { // CompositeMode is a composite mode to draw. // The default (zero) value is regular alpha blending. CompositeMode CompositeMode // Uniforms is a set of uniform variables for the shader. // The keys are the names of the uniform variables. // The values must be float or []float. // If the uniform variable type is an array, a vector or a matrix, // you have to specify linearly flattened values as a slice. // For example, if the uniform variable type is [4]vec4, the number of the slice values will be 16. Uniforms map[string]interface{} // Images is a set of the source images. // All the images' sizes must be the same. Images [4]*Image // FillRule indicates the rule how an overlapped region is rendered. // // The rule EvenOdd is useful when you want to render a complex polygon. // A complex polygon is a non-convex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon. // See examples/vector for actual usages. // // The default (zero) value is FillAll. FillRule FillRule } func init() { var op DrawTrianglesShaderOptions if got, want := len(op.Images), graphics.ShaderImageCount; got != want { panic(fmt.Sprintf("ebiten: len((DrawTrianglesShaderOptions{}).Images) must be %d but %d", want, got)) } } // DrawTrianglesShader draws triangles with the specified vertices and their indices with the specified shader. // // Vertex contains color values, which can be interpreted for any purpose by the shader. // // For the details about the shader, see https://ebitengine.org/en/documents/shader.html. // // If len(indices) is not multiple of 3, DrawTrianglesShader panics. // // If len(indices) is more than MaxIndicesCount, DrawTrianglesShader panics. // // When a specified image is non-nil and is disposed, DrawTrianglesShader panics. // // When the image i is disposed, DrawTrianglesShader does nothing. func (i *Image) DrawTrianglesShader(vertices []Vertex, indices []uint16, shader *Shader, options *DrawTrianglesShaderOptions) { i.copyCheck() if i.isDisposed() { return } if len(indices)%3 != 0 { panic("ebiten: len(indices) % 3 must be 0") } if len(indices) > MaxIndicesCount { panic("ebiten: len(indices) must be <= MaxIndicesCount") } // TODO: Check the maximum value of indices and len(vertices)? if options == nil { options = &DrawTrianglesShaderOptions{} } blend := options.CompositeMode.blend() vs := graphics.Vertices(len(vertices)) dst := i src := options.Images[0] for i, v := range vertices { dx, dy := dst.adjustPositionF32(v.DstX, v.DstY) vs[i*graphics.VertexFloatCount] = dx vs[i*graphics.VertexFloatCount+1] = dy sx, sy := v.SrcX, v.SrcY if src != nil { sx, sy = src.adjustPositionF32(sx, sy) } vs[i*graphics.VertexFloatCount+2] = sx vs[i*graphics.VertexFloatCount+3] = sy vs[i*graphics.VertexFloatCount+4] = v.ColorR vs[i*graphics.VertexFloatCount+5] = v.ColorG vs[i*graphics.VertexFloatCount+6] = v.ColorB vs[i*graphics.VertexFloatCount+7] = v.ColorA } is := make([]uint16, len(indices)) copy(is, indices) var imgs [graphics.ShaderImageCount]*ui.Image var imgw, imgh int for i, img := range options.Images { if img == nil { continue } if img.isDisposed() { panic("ebiten: the given image to DrawTrianglesShader must not be disposed") } if i == 0 { imgw, imgh = img.Size() } else { // TODO: Check imgw > 0 && imgh > 0 if w, h := img.Size(); imgw != w || imgh != h { panic("ebiten: all the source images must be the same size with the rectangle") } } imgs[i] = img.image } var sx, sy int var sr graphicsdriver.Region if img := options.Images[0]; img != nil { b := img.Bounds() sx, sy = img.adjustPosition(b.Min.X, b.Min.Y) sr = img.adjustedRegion() } var offsets [graphics.ShaderImageCount - 1][2]float32 for i, img := range options.Images[1:] { if img == nil { continue } b := img.Bounds() x, y := img.adjustPosition(b.Min.X, b.Min.Y) // (sx, sy) is the upper-left position of the first image. // Calculate the distance between the current image's upper-left position and the first one's. offsets[i][0] = float32(x - sx) offsets[i][1] = float32(y - sy) } i.image.DrawTriangles(imgs, vs, is, blend, i.adjustedRegion(), sr, offsets, shader.shader, shader.convertUniforms(options.Uniforms), options.FillRule == EvenOdd, true) } // DrawRectShaderOptions represents options for DrawRectShader. type DrawRectShaderOptions struct { // GeoM is a geometry matrix to draw. // The default (zero) value is identity, which draws the rectangle at (0, 0). GeoM GeoM // ColorScale is a scale of color. // This scaling values are passed to the `color vec4` argument of the Fragment function in a Kage program. // The default (zero) value is identity, which is (1, 1, 1, 1). ColorScale ColorScale // CompositeMode is a composite mode to draw. // The default (zero) value is regular alpha blending. CompositeMode CompositeMode // Uniforms is a set of uniform variables for the shader. // The keys are the names of the uniform variables. // The values must be float or []float. // If the uniform variable type is an array, a vector or a matrix, // you have to specify linearly flattened values as a slice. // For example, if the uniform variable type is [4]vec4, the number of the slice values will be 16. Uniforms map[string]interface{} // Images is a set of the source images. // All the images' sizes must be the same. Images [4]*Image } func init() { var op DrawRectShaderOptions if got, want := len(op.Images), graphics.ShaderImageCount; got != want { panic(fmt.Sprintf("ebiten: len((DrawRectShaderOptions{}).Images) must be %d but %d", want, got)) } } // DrawRectShader draws a rectangle with the specified width and height with the specified shader. // // For the details about the shader, see https://ebitengine.org/en/documents/shader.html. // // When one of the specified image is non-nil and is disposed, DrawRectShader panics. // // When the image i is disposed, DrawRectShader does nothing. func (i *Image) DrawRectShader(width, height int, shader *Shader, options *DrawRectShaderOptions) { i.copyCheck() if i.isDisposed() { return } if options == nil { options = &DrawRectShaderOptions{} } blend := options.CompositeMode.blend() var imgs [graphics.ShaderImageCount]*ui.Image for i, img := range options.Images { if img == nil { continue } if img.isDisposed() { panic("ebiten: the given image to DrawRectShader must not be disposed") } if w, h := img.Size(); width != w || height != h { panic("ebiten: all the source images must be the same size with the rectangle") } imgs[i] = img.image } var sx, sy int var sr graphicsdriver.Region if img := options.Images[0]; img != nil { b := img.Bounds() sx, sy = img.adjustPosition(b.Min.X, b.Min.Y) sr = img.adjustedRegion() } if offsetX, offsetY := i.adjustPosition(0, 0); offsetX != 0 || offsetY != 0 { options.GeoM.Translate(float64(offsetX), float64(offsetY)) } a, b, c, d, tx, ty := options.GeoM.elements32() cr, cg, cb, ca := options.ColorScale.elements() vs := graphics.QuadVertices(float32(sx), float32(sy), float32(sx+width), float32(sy+height), a, b, c, d, tx, ty, cr, cg, cb, ca) is := graphics.QuadIndices() var offsets [graphics.ShaderImageCount - 1][2]float32 for i, img := range options.Images[1:] { if img == nil { continue } b := img.Bounds() x, y := img.adjustPosition(b.Min.X, b.Min.Y) // (sx, sy) is the upper-left position of the first image. // Calculate the distance between the current image's upper-left position and the first one's. offsets[i][0] = float32(x - sx) offsets[i][1] = float32(y - sy) } i.image.DrawTriangles(imgs, vs, is, blend, i.adjustedRegion(), sr, offsets, shader.shader, shader.convertUniforms(options.Uniforms), false, true) } // SubImage returns an image representing the portion of the image p visible through r. // The returned value shares pixels with the original image. // // The returned value is always *ebiten.Image. // // If the image is disposed, SubImage returns nil. // // A sub-image returned by SubImage can be used as a rendering source and a rendering destination. // If a sub-image is used as a rendering source, the image is used as if it is a small image. // If a sub-image is used as a rendering destination, the region being rendered is clipped. // // Successive uses of multiple various regions as rendering destination might not be efficient, // even though all the underlying images are the same. // It's because such renderings cannot be unified into one internal draw command. func (i *Image) SubImage(r image.Rectangle) image.Image { i.copyCheck() if i.isDisposed() { return nil } r = r.Intersect(i.Bounds()) // Need to check Empty explicitly. See the standard image package implementations. if r.Empty() { r = image.ZR } // Keep the original image's reference not to dispose that by GC. var orig = i if i.isSubImage() { orig = i.original } img := &Image{ image: i.image, bounds: r, original: orig, } img.addr = img return img } // Bounds returns the bounds of the image. // // Bounds implements the standard image.Image's Bounds. func (i *Image) Bounds() image.Rectangle { if i.isDisposed() { panic("ebiten: the image is already disposed") } return i.bounds } // ColorModel returns the color model of the image. // // ColorModel implements the standard image.Image's ColorModel. func (i *Image) ColorModel() color.Model { return color.RGBAModel } // ReadPixels reads the image's pixels from the image. // // The given pixels represent RGBA pre-multiplied alpha values. // // ReadPixels loads pixels from GPU to system memory if necessary, which means that ReadPixels can be slow. // // ReadPixels always sets a transparent color if the image is disposed. // // len(pixels) must be 4 * (bounds width) * (bounds height). // If len(pixels) is not correct, ReadPixels panics. // // ReadPixels also works on a sub-image. // // Note that an important logic should not rely on values returned by ReadPixels, since // the returned values can include very slight differences between some machines. // // ReadPixels can't be called outside the main loop (ebiten.Run's updating function) starts. func (i *Image) ReadPixels(pixels []byte) { b := i.Bounds() if got, want := len(pixels), 4*b.Dx()*b.Dy(); got != want { panic(fmt.Sprintf("ebiten: len(pixels) must be %d but %d at ReadPixels", want, got)) } if i.isDisposed() { for i := range pixels { pixels[i] = 0 } return } x, y := i.adjustPosition(b.Min.X, b.Min.Y) i.image.ReadPixels(pixels, x, y, b.Dx(), b.Dy()) } // At returns the color of the image at (x, y). // // At implements the standard image.Image's At. // // At loads pixels from GPU to system memory if necessary, which means that At can be slow. // // At always returns a transparent color if the image is disposed. // // Note that an important logic should not rely on values returned by At, since // the returned values can include very slight differences between some machines. // // At can't be called outside the main loop (ebiten.Run's updating function) starts. func (i *Image) At(x, y int) color.Color { r, g, b, a := i.at(x, y) return color.RGBA{r, g, b, a} } // RGBA64At implements the standard image.RGBA64Image's RGBA64At. // // RGBA64At loads pixels from GPU to system memory if necessary, which means // that RGBA64At can be slow. // // RGBA64At always returns a transparent color if the image is disposed. // // Note that an important logic should not rely on values returned by RGBA64At, // since the returned values can include very slight differences between some machines. // // RGBA64At can't be called outside the main loop (ebiten.Run's updating function) starts. func (i *Image) RGBA64At(x, y int) color.RGBA64 { r, g, b, a := i.at(x, y) return color.RGBA64{uint16(r) * 0x101, uint16(g) * 0x101, uint16(b) * 0x101, uint16(a) * 0x101} } func (i *Image) at(x, y int) (r, g, b, a byte) { if i.isDisposed() { return 0, 0, 0, 0 } if !image.Pt(x, y).In(i.Bounds()) { return 0, 0, 0, 0 } x, y = i.adjustPosition(x, y) var pix [4]byte i.image.ReadPixels(pix[:], x, y, 1, 1) return pix[0], pix[1], pix[2], pix[3] } // Set sets the color at (x, y). // // Set implements the standard draw.Image's Set. // // Set loads pixels from GPU to system memory if necessary, which means that Set can be slow. // // In the current implementation, successive calls of Set invokes loading pixels at most once, so this is efficient. // // If the image is disposed, Set does nothing. func (i *Image) Set(x, y int, clr color.Color) { i.copyCheck() if i.isDisposed() { return } if !image.Pt(x, y).In(i.Bounds()) { return } if i.isSubImage() { i = i.original } dx, dy := i.adjustPosition(x, y) cr, cg, cb, ca := clr.RGBA() i.image.WritePixels([]byte{byte(cr / 0x101), byte(cg / 0x101), byte(cb / 0x101), byte(ca / 0x101)}, dx, dy, 1, 1) } // Dispose disposes the image data. // After disposing, most of image functions do nothing and returns meaningless values. // // Calling Dispose is not mandatory. GC automatically collects internal resources that no objects refer to. // However, calling Dispose explicitly is helpful if memory usage matters. // // If the image is a sub-image, Dispose does nothing. // // When the image is disposed, Dipose does nothing. func (i *Image) Dispose() { i.copyCheck() if i.isDisposed() { return } if i.isSubImage() { return } i.image.MarkDisposed() i.image = nil } // WritePixels replaces the pixels of the image. // // The given pixels are treated as RGBA pre-multiplied alpha values. // // len(pix) must be 4 * (bounds width) * (bounds height). // If len(pix) is not correct, WritePixels panics. // // WritePixels also works on a sub-image. // // When the image is disposed, WritePixels does nothing. func (i *Image) WritePixels(pixels []byte) { i.copyCheck() if i.isDisposed() { return } r := i.Bounds() x, y := i.adjustPosition(r.Min.X, r.Min.Y) // Do not need to copy pixels here. // * In internal/mipmap, pixels are copied when necessary. // * In internal/atlas, pixels are copied to make its paddings. i.image.WritePixels(pixels, x, y, r.Dx(), r.Dy()) } // ReplacePixels replaces the pixels of the image. // // Deprecated: as of v2.4. Use WritePixels instead. func (i *Image) ReplacePixels(pixels []byte) { i.WritePixels(pixels) } // NewImage returns an empty image. // // If width or height is less than 1 or more than device-dependent maximum size, NewImage panics. // // NewImage should be called only when necessary. // For example, you should avoid to call NewImage every Update or Draw call. // Reusing the same image by Clear is much more efficient than creating a new image. // // NewImage panics if RunGame already finishes. func NewImage(width, height int) *Image { return newImage(image.Rect(0, 0, width, height), atlas.ImageTypeRegular) } // NewImageOptions represents options for NewImage. type NewImageOptions struct { // Unmanaged represents whether the image is unmanaged or not. // The default (zero) value is false, that means the image is managed. // // An unmanaged image is never on an internal automatic texture atlas. // A regular image is a part of an internal texture atlas, and locating them is done automatically in Ebitengine. // Unmanaged is useful when you want finer controls over the image for performance and memory reasons. Unmanaged bool } // NewImageWithOptions returns an empty image with the given bounds and the options. // // If width or height is less than 1 or more than device-dependent maximum size, NewImageWithOptions panics. // // The rendering origin position is (0, 0) of the given bounds. // If DrawImage is called on a new image created by NewImageOptions, // for example, the center of scaling and rotating is (0, 0), that might not be a upper-left position. // // If options is nil, the default setting is used. // // NewImageWithOptions should be called only when necessary. // For example, you should avoid to call NewImageWithOptions every Update or Draw call. // Reusing the same image by Clear is much more efficient than creating a new image. // // NewImageWithOptions panics if RunGame already finishes. func NewImageWithOptions(bounds image.Rectangle, options *NewImageOptions) *Image { imageType := atlas.ImageTypeRegular if options != nil && options.Unmanaged { imageType = atlas.ImageTypeUnmanaged } return newImage(bounds, imageType) } func newImage(bounds image.Rectangle, imageType atlas.ImageType) *Image { if isRunGameEnded() { panic(fmt.Sprintf("ebiten: NewImage cannot be called after RunGame finishes")) } width, height := bounds.Dx(), bounds.Dy() if width <= 0 { panic(fmt.Sprintf("ebiten: width at NewImage must be positive but %d", width)) } if height <= 0 { panic(fmt.Sprintf("ebiten: height at NewImage must be positive but %d", height)) } i := &Image{ image: ui.NewImage(width, height, imageType), bounds: bounds, } i.addr = i return i } // NewImageFromImage creates a new image with the given image (source). // // If source's width or height is less than 1 or more than device-dependent maximum size, NewImageFromImage panics. // // NewImageFromImage should be called only when necessary. // For example, you should avoid to call NewImageFromImage every Update or Draw call. // Reusing the same image by Clear and WritePixels is much more efficient than creating a new image. // // NewImageFromImage panics if RunGame already finishes. // // The returned image's upper-left position is always (0, 0). The source's bounds are not respected. func NewImageFromImage(source image.Image) *Image { return NewImageFromImageWithOptions(source, nil) } // NewImageFromImageOptions represents options for NewImageFromImage. type NewImageFromImageOptions struct { // Unmanaged represents whether the image is unmanaged or not. // The default (zero) value is false, that means the image is managed. // // An unmanaged image is never on an internal automatic texture atlas. // A regular image is a part of an internal texture atlas, and locating them is done automatically in Ebitengine. // Unmanaged is useful when you want finer controls over the image for performance and memory reasons. Unmanaged bool // PreserveBounds represents whether the new image's bounds are the same as the given image. // The default (zero) value is false, that means the new image's upper-left position is adjusted to (0, 0). PreserveBounds bool } // NewImageFromImageWithOptions creates a new image with the given image (source) with the given options. // // If source's width or height is less than 1 or more than device-dependent maximum size, NewImageFromImageWithOptions panics. // // If options is nil, the default setting is used. // // NewImageFromImageWithOptions should be called only when necessary. // For example, you should avoid to call NewImageFromImageWithOptions every Update or Draw call. // Reusing the same image by Clear and WritePixels is much more efficient than creating a new image. // // NewImageFromImageWithOptions panics if RunGame already finishes. func NewImageFromImageWithOptions(source image.Image, options *NewImageFromImageOptions) *Image { if options == nil { options = &NewImageFromImageOptions{} } var r image.Rectangle if options.PreserveBounds { r = source.Bounds() } else { size := source.Bounds().Size() r = image.Rect(0, 0, size.X, size.Y) } i := NewImageWithOptions(r, &NewImageOptions{ Unmanaged: options.Unmanaged, }) // If the given image is an Ebitengine image, use DrawImage instead of reading pixels from the source. // This works even before the game loop runs. if source, ok := source.(*Image); ok { op := &DrawImageOptions{} if options.PreserveBounds { b := source.Bounds() op.GeoM.Translate(float64(b.Min.X), float64(b.Min.Y)) } i.DrawImage(source, op) return i } i.WritePixels(imageToBytes(source)) return i } // colorMToScale returns a new color matrix and color sclaes that equal to the given matrix in terms of the effect. // // If the given matrix is merely a scaling matrix, colorMToScale returns // an identity matrix and its scaling factors in premultiplied-alpha format. // This is useful to optimize the rendering speed by avoiding the use of the // color matrix and instead multiplying all vertex colors by the scale. func colorMToScale(colorm affine.ColorM) (newColorM affine.ColorM, r, g, b, a float32) { if colorm.IsIdentity() { return colorm, 1, 1, 1, 1 } if !colorm.ScaleOnly() { return colorm, 1, 1, 1, 1 } r = colorm.At(0, 0) g = colorm.At(1, 1) b = colorm.At(2, 2) a = colorm.At(3, 3) // Color matrices work on non-premultiplied colors. // This color matrix can only make colors darker or equal, // and thus can never invoke color clamping. // Thus the simpler vertex color scale based shader can be used. // // Negative color values can become positive and out-of-range // after applying to vertex colors below, which can make the min() in the shader kick in. // // Alpha values smaller than 0, combined with negative vertex colors, // can also make the min() kick in, so that shall be ruled out too. if r < 0 || g < 0 || b < 0 || a < 0 || r > 1 || g > 1 || b > 1 { return colorm, 1, 1, 1, 1 } return affine.ColorMIdentity{}, r * a, g * a, b * a, a } // private implements FinalScreen. func (*Image) private() { }