// Copyright 2018 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package atlas_test import ( "image/color" "runtime" "testing" "github.com/hajimehoshi/ebiten/v2/internal/atlas" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" t "github.com/hajimehoshi/ebiten/v2/internal/testing" "github.com/hajimehoshi/ebiten/v2/internal/ui" ) const ( minImageSizeForTesting = 1024 maxImageSizeForTesting = 4096 ) func TestMain(m *testing.M) { atlas.SetImageSizeForTesting(minImageSizeForTesting, maxImageSizeForTesting) defer atlas.ResetImageSizeForTesting() t.MainWithRunLoop(m) } func quadVertices(sw, sh, x, y int, scalex float32) []float32 { dx0 := float32(x) dy0 := float32(y) dx1 := float32(x) + float32(sw)*scalex dy1 := float32(y) + float32(sh) sx0 := float32(0) sy0 := float32(0) sx1 := float32(sw) sy1 := float32(sh) return []float32{ dx0, dy0, sx0, sy0, 1, 1, 1, 1, dx1, dy0, sx1, sy0, 1, 1, 1, 1, dx0, dy1, sx0, sy1, 1, 1, 1, 1, dx1, dy1, sx1, sy1, 1, 1, 1, 1, } } const bigSize = 2049 func TestEnsureIsolated(t *testing.T) { // Create img1 and img2 with this size so that the next images are allocated // with non-upper-left location. img1 := atlas.NewImage(bigSize, 100, atlas.ImageTypeRegular) defer img1.MarkDisposed() // Ensure img1's region is allocated. img1.WritePixels(make([]byte, 4*bigSize*100), 0, 0, bigSize, 100) img2 := atlas.NewImage(100, bigSize, atlas.ImageTypeRegular) defer img2.MarkDisposed() img2.WritePixels(make([]byte, 4*100*bigSize), 0, 0, 100, bigSize) const size = 32 img3 := atlas.NewImage(size/2, size/2, atlas.ImageTypeRegular) defer img3.MarkDisposed() img3.WritePixels(make([]byte, (size/2)*(size/2)*4), 0, 0, size/2, size/2) img4 := atlas.NewImage(size, size, atlas.ImageTypeRegular) defer img4.MarkDisposed() img5 := atlas.NewImage(size/2, size/2, atlas.ImageTypeRegular) defer img3.MarkDisposed() pix := make([]byte, size*size*4) for j := 0; j < size; j++ { for i := 0; i < size; i++ { pix[4*(i+j*size)] = byte(i + j) pix[4*(i+j*size)+1] = byte(i + j) pix[4*(i+j*size)+2] = byte(i + j) pix[4*(i+j*size)+3] = byte(i + j) } } img4.WritePixels(pix, 0, 0, size, size) const ( dx0 = size / 4 dy0 = size / 4 dx1 = size * 3 / 4 dy1 = size * 3 / 4 ) // img4.EnsureIsolated() should be called. vs := quadVertices(size/2, size/2, size/4, size/4, 1) is := graphics.QuadIndices() dr := graphicsdriver.Region{ X: 0, Y: 0, Width: size, Height: size, } img4.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{img3}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := img4.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } // Make img3 isolated before getting pixels. vs = quadVertices(0, 0, size/2, size/2, 1) dr = graphicsdriver.Region{ X: 0, Y: 0, Width: size / 2, Height: size / 2, } img3.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{img5}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := img3.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } pix = make([]byte, 4*size*size) if err := img4.ReadPixels(ui.GraphicsDriverForTesting(), pix); err != nil { t.Fatal(err) } for j := 0; j < size; j++ { for i := 0; i < size; i++ { r := pix[4*(size*j+i)] g := pix[4*(size*j+i)+1] b := pix[4*(size*j+i)+2] a := pix[4*(size*j+i)+3] got := color.RGBA{r, g, b, a} var want color.RGBA if i < dx0 || dx1 <= i || j < dy0 || dy1 <= j { c := byte(i + j) want = color.RGBA{c, c, c, c} } if got != want { t.Errorf("at(%d, %d): got: %v, want: %v", i, j, got, want) } } } // Check further drawing doesn't cause panic. // This bug was fixed by 03dcd948. img4.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{img3}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) } func TestReputOnAtlas(t *testing.T) { const size = 16 img0 := atlas.NewImage(size, size, atlas.ImageTypeRegular) defer img0.MarkDisposed() img0.WritePixels(make([]byte, 4*size*size), 0, 0, size, size) img1 := atlas.NewImage(size, size, atlas.ImageTypeRegular) defer img1.MarkDisposed() img1.WritePixels(make([]byte, 4*size*size), 0, 0, size, size) if got, want := img1.IsOnAtlasForTesting(), true; got != want { t.Errorf("got: %v, want: %v", got, want) } img2 := atlas.NewImage(size, size, atlas.ImageTypeRegular) defer img2.MarkDisposed() pix := make([]byte, 4*size*size) for j := 0; j < size; j++ { for i := 0; i < size; i++ { pix[4*(i+j*size)] = byte(i + j) pix[4*(i+j*size)+1] = byte(i + j) pix[4*(i+j*size)+2] = byte(i + j) pix[4*(i+j*size)+3] = byte(i + j) } } img2.WritePixels(pix, 0, 0, size, size) // Create a volatile image. This should always be isolated. img3 := atlas.NewImage(size, size, atlas.ImageTypeVolatile) defer img3.MarkDisposed() img1.WritePixels(make([]byte, 4*size*size), 0, 0, size, size) if got, want := img3.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } // Use img1 as a render target. vs := quadVertices(size, size, 0, 0, 1) is := graphics.QuadIndices() dr := graphicsdriver.Region{ X: 0, Y: 0, Width: size, Height: size, } img1.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{img2}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := img1.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } // Use img1 as a render source. // Use the doubled count since img1 was on a texture atlas and became an isolated image once. // Then, img1 requires longer time to recover to be on a textur atlas again. for i := 0; i < atlas.BaseCountToPutOnAtlas*2; i++ { if err := atlas.PutImagesOnAtlasForTesting(ui.GraphicsDriverForTesting()); err != nil { t.Fatal(err) } img0.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{img1}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := img1.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } } if err := atlas.PutImagesOnAtlasForTesting(ui.GraphicsDriverForTesting()); err != nil { t.Fatal(err) } pix = make([]byte, 4*size*size) if err := img1.ReadPixels(ui.GraphicsDriverForTesting(), pix); err != nil { t.Fatal(err) } for j := 0; j < size; j++ { for i := 0; i < size; i++ { want := color.RGBA{byte(i + j), byte(i + j), byte(i + j), byte(i + j)} r := pix[4*(size*j+i)] g := pix[4*(size*j+i)+1] b := pix[4*(size*j+i)+2] a := pix[4*(size*j+i)+3] got := color.RGBA{r, g, b, a} if got != want { t.Errorf("At(%d, %d): got: %v, want: %v", i, j, got, want) } } } // img1 is on an atlas again. img0.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{img1}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := img1.IsOnAtlasForTesting(), true; got != want { t.Errorf("got: %v, want: %v", got, want) } pix = make([]byte, 4*size*size) if err := img1.ReadPixels(ui.GraphicsDriverForTesting(), pix); err != nil { t.Fatal(err) } for j := 0; j < size; j++ { for i := 0; i < size; i++ { want := color.RGBA{byte(i + j), byte(i + j), byte(i + j), byte(i + j)} r := pix[4*(size*j+i)] g := pix[4*(size*j+i)+1] b := pix[4*(size*j+i)+2] a := pix[4*(size*j+i)+3] got := color.RGBA{r, g, b, a} if got != want { t.Errorf("At(%d, %d): got: %v, want: %v", i, j, got, want) } } } // Use img1 as a render target again. img1.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{img2}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := img1.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } // Use img1 as a render source, but call WritePixels. // Now use 4x count as img1 became an isolated image again. for i := 0; i < atlas.BaseCountToPutOnAtlas*4; i++ { if err := atlas.PutImagesOnAtlasForTesting(ui.GraphicsDriverForTesting()); err != nil { t.Fatal(err) } img1.WritePixels(make([]byte, 4*size*size), 0, 0, size, size) img0.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{img1}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := img1.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } } if err := atlas.PutImagesOnAtlasForTesting(ui.GraphicsDriverForTesting()); err != nil { t.Fatal(err) } // img1 is not on an atlas due to WritePixels. img0.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{img1}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := img1.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } // Use img3 as a render source. As img3 is volatile, img3 is never on an atlas. for i := 0; i < atlas.BaseCountToPutOnAtlas*2; i++ { if err := atlas.PutImagesOnAtlasForTesting(ui.GraphicsDriverForTesting()); err != nil { t.Fatal(err) } img0.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{img3}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := img3.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } } runtime.GC() } func TestExtend(t *testing.T) { const w0, h0 = 100, 100 img0 := atlas.NewImage(w0, h0, atlas.ImageTypeRegular) defer img0.MarkDisposed() p0 := make([]byte, 4*w0*h0) for i := 0; i < w0*h0; i++ { p0[4*i] = byte(i) p0[4*i+1] = byte(i) p0[4*i+2] = byte(i) p0[4*i+3] = byte(i) } img0.WritePixels(p0, 0, 0, w0, h0) const w1, h1 = minImageSizeForTesting + 1, 100 img1 := atlas.NewImage(w1, h1, atlas.ImageTypeRegular) defer img1.MarkDisposed() p1 := make([]byte, 4*w1*h1) for i := 0; i < w1*h1; i++ { p1[4*i] = byte(i) p1[4*i+1] = byte(i) p1[4*i+2] = byte(i) p1[4*i+3] = byte(i) } // Ensure to allocate img1.WritePixels(p1, 0, 0, w1, h1) pix0 := make([]byte, 4*w0*h0) if err := img0.ReadPixels(ui.GraphicsDriverForTesting(), pix0); err != nil { t.Fatal(err) } for j := 0; j < h0; j++ { for i := 0; i < w0; i++ { r := pix0[4*(w0*j+i)] g := pix0[4*(w0*j+i)+1] b := pix0[4*(w0*j+i)+2] a := pix0[4*(w0*j+i)+3] got := color.RGBA{r, g, b, a} c := byte(i + w0*j) want := color.RGBA{c, c, c, c} if got != want { t.Errorf("at(%d, %d): got: %v, want: %v", i, j, got, want) } } } pix1 := make([]byte, 4*w1*h1) if err := img1.ReadPixels(ui.GraphicsDriverForTesting(), pix1); err != nil { t.Fatal(err) } for j := 0; j < h1; j++ { for i := 0; i < w1; i++ { r := pix1[4*(w1*j+i)] g := pix1[4*(w1*j+i)+1] b := pix1[4*(w1*j+i)+2] a := pix1[4*(w1*j+i)+3] got := color.RGBA{r, g, b, a} c := byte(i + w1*j) want := color.RGBA{c, c, c, c} if got != want { t.Errorf("at(%d, %d): got: %v, want: %v", i, j, got, want) } } } } func TestWritePixelsAfterDrawTriangles(t *testing.T) { const w, h = 256, 256 src := atlas.NewImage(w, h, atlas.ImageTypeRegular) defer src.MarkDisposed() dst := atlas.NewImage(w, h, atlas.ImageTypeRegular) defer dst.MarkDisposed() pix := make([]byte, 4*w*h) for i := 0; i < w*h; i++ { pix[4*i] = byte(i) pix[4*i+1] = byte(i) pix[4*i+2] = byte(i) pix[4*i+3] = byte(i) } src.WritePixels(pix, 0, 0, w, h) vs := quadVertices(w, h, 0, 0, 1) is := graphics.QuadIndices() dr := graphicsdriver.Region{ X: 0, Y: 0, Width: w, Height: h, } dst.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{src}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) dst.WritePixels(pix, 0, 0, w, h) pix = make([]byte, 4*w*h) if err := dst.ReadPixels(ui.GraphicsDriverForTesting(), pix); err != nil { t.Fatal(err) } for j := 0; j < h; j++ { for i := 0; i < w; i++ { r := pix[4*(w*j+i)] g := pix[4*(w*j+i)+1] b := pix[4*(w*j+i)+2] a := pix[4*(w*j+i)+3] got := color.RGBA{r, g, b, a} c := byte(i + w*j) want := color.RGBA{c, c, c, c} if got != want { t.Errorf("at(%d, %d): got %v, want: %v", i, j, got, want) } } } } // Issue #887 func TestSmallImages(t *testing.T) { const w, h = 4, 8 src := atlas.NewImage(w, h, atlas.ImageTypeRegular) defer src.MarkDisposed() dst := atlas.NewImage(w, h, atlas.ImageTypeRegular) defer dst.MarkDisposed() pix := make([]byte, 4*w*h) for i := 0; i < w*h; i++ { pix[4*i] = 0xff pix[4*i+1] = 0xff pix[4*i+2] = 0xff pix[4*i+3] = 0xff } src.WritePixels(pix, 0, 0, w, h) vs := quadVertices(w, h, 0, 0, 1) is := graphics.QuadIndices() dr := graphicsdriver.Region{ X: 0, Y: 0, Width: w, Height: h, } dst.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{src}, vs, is, graphicsdriver.BlendSourceOver, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) pix = make([]byte, 4*w*h) if err := dst.ReadPixels(ui.GraphicsDriverForTesting(), pix); err != nil { t.Fatal(err) } for j := 0; j < h; j++ { for i := 0; i < w; i++ { r := pix[4*(w*j+i)] a := pix[4*(w*j+i)+3] if got, want := r, byte(0xff); got != want { t.Errorf("at(%d, %d) red: got: %d, want: %d", i, j, got, want) } if got, want := a, byte(0xff); got != want { t.Errorf("at(%d, %d) alpha: got: %d, want: %d", i, j, got, want) } } } } // Issue #887 func TestLongImages(t *testing.T) { const w, h = 1, 6 src := atlas.NewImage(w, h, atlas.ImageTypeRegular) defer src.MarkDisposed() const dstW, dstH = 256, 256 dst := atlas.NewImage(dstW, dstH, atlas.ImageTypeRegular) defer dst.MarkDisposed() pix := make([]byte, 4*w*h) for i := 0; i < w*h; i++ { pix[4*i] = 0xff pix[4*i+1] = 0xff pix[4*i+2] = 0xff pix[4*i+3] = 0xff } src.WritePixels(pix, 0, 0, w, h) const scale = 120 vs := quadVertices(w, h, 0, 0, scale) is := graphics.QuadIndices() dr := graphicsdriver.Region{ X: 0, Y: 0, Width: dstW, Height: dstH, } dst.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{src}, vs, is, graphicsdriver.BlendSourceOver, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) pix = make([]byte, 4*dstW*dstH) if err := dst.ReadPixels(ui.GraphicsDriverForTesting(), pix); err != nil { t.Fatal(err) } for j := 0; j < h; j++ { for i := 0; i < w*scale; i++ { r := pix[4*(dstW*j+i)] a := pix[4*(dstW*j+i)+3] if got, want := r, byte(0xff); got != want { t.Errorf("at(%d, %d) red: got: %d, want: %d", i, j, got, want) } if got, want := a, byte(0xff); got != want { t.Errorf("at(%d, %d) alpha: got: %d, want: %d", i, j, got, want) } } } } func TestDisposeImmediately(t *testing.T) { // This tests restorable.Image.ClearPixels is called but WritePixels is not called. img0 := atlas.NewImage(16, 16, atlas.ImageTypeRegular) img0.EnsureIsolatedForTesting() defer img0.MarkDisposed() img1 := atlas.NewImage(16, 16, atlas.ImageTypeRegular) img1.EnsureIsolatedForTesting() defer img1.MarkDisposed() // img0 and img1 should share the same backend in 99.9999% possibility. } // Issue #1028 func TestExtendWithBigImage(t *testing.T) { img0 := atlas.NewImage(1, 1, atlas.ImageTypeRegular) defer img0.MarkDisposed() img0.WritePixels(make([]byte, 4*1*1), 0, 0, 1, 1) img1 := atlas.NewImage(minImageSizeForTesting+1, minImageSizeForTesting+1, atlas.ImageTypeRegular) defer img1.MarkDisposed() img1.WritePixels(make([]byte, 4*(minImageSizeForTesting+1)*(minImageSizeForTesting+1)), 0, 0, minImageSizeForTesting+1, minImageSizeForTesting+1) } // Issue #1217 func TestMaxImageSize(t *testing.T) { img0 := atlas.NewImage(1, 1, atlas.ImageTypeRegular) defer img0.MarkDisposed() paddingSize := img0.PaddingSizeForTesting() // This tests that a too-big image is allocated correctly. s := maxImageSizeForTesting - 2*paddingSize img1 := atlas.NewImage(s, s, atlas.ImageTypeRegular) defer img1.MarkDisposed() img1.WritePixels(make([]byte, 4*s*s), 0, 0, s, s) } // Issue #1217 (disabled) func Disable_TestMinImageSize(t *testing.T) { // The backend cannot be reset. If this is necessary, sync the state with the images (#1756). // ResetBackendsForTesting() // This tests that extending a backend works correctly. // Though the image size is minimum size of the backend, extending the backend happens due to the paddings. s := minImageSizeForTesting img := atlas.NewImage(s, s, atlas.ImageTypeRegular) defer img.MarkDisposed() img.WritePixels(make([]byte, 4*s*s), 0, 0, s, s) } func TestMaxImageSizeJust(t *testing.T) { s := maxImageSizeForTesting // An unmanged image never belongs to an atlas and doesn't have its paddings. // TODO: Should we allow such this size for ImageTypeRegular? img := atlas.NewImage(s, s, atlas.ImageTypeUnmanaged) defer img.MarkDisposed() img.WritePixels(make([]byte, 4*s*s), 0, 0, s, s) } func TestMaxImageSizeExceeded(t *testing.T) { // This tests that a too-big image is allocated correctly. s := maxImageSizeForTesting img := atlas.NewImage(s+1, s, atlas.ImageTypeRegular) defer img.MarkDisposed() defer func() { if err := recover(); err == nil { t.Errorf("WritePixels must panic but not") } }() img.WritePixels(make([]byte, 4*(s+1)*s), 0, 0, s+1, s) } // Issue #1421 func TestDisposedAndReputOnAtlas(t *testing.T) { const size = 16 src := atlas.NewImage(size, size, atlas.ImageTypeRegular) defer src.MarkDisposed() src2 := atlas.NewImage(size, size, atlas.ImageTypeRegular) defer src2.MarkDisposed() dst := atlas.NewImage(size, size, atlas.ImageTypeRegular) defer dst.MarkDisposed() // Use src as a render target so that src is not on an atlas. vs := quadVertices(size, size, 0, 0, 1) is := graphics.QuadIndices() dr := graphicsdriver.Region{ X: 0, Y: 0, Width: size, Height: size, } src.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{src2}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := src.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } // Use src as a render source. for i := 0; i < atlas.BaseCountToPutOnAtlas/2; i++ { if err := atlas.PutImagesOnAtlasForTesting(ui.GraphicsDriverForTesting()); err != nil { t.Fatal(err) } dst.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{src}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := src.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } } // Before PutImaegsOnAtlasForTesting, dispose the image. src.MarkDisposed() // Force to dispose the image. atlas.FlushDeferredForTesting() // Confirm that PutImagesOnAtlasForTesting doesn't panic. if err := atlas.PutImagesOnAtlasForTesting(ui.GraphicsDriverForTesting()); err != nil { t.Fatal(err) } } // Issue #1456 func TestImageIsNotReputOnAtlasWithoutUsingAsSource(t *testing.T) { const size = 16 src := atlas.NewImage(size, size, atlas.ImageTypeRegular) defer src.MarkDisposed() src2 := atlas.NewImage(size, size, atlas.ImageTypeRegular) defer src2.MarkDisposed() dst := atlas.NewImage(size, size, atlas.ImageTypeRegular) defer dst.MarkDisposed() // Use src as a render target so that src is not on an atlas. vs := quadVertices(size, size, 0, 0, 1) is := graphics.QuadIndices() dr := graphicsdriver.Region{ X: 0, Y: 0, Width: size, Height: size, } // Use src2 as a rendering target, and make src2 an independent image. src2.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{src}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := src2.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } // Update the count without using src2 as a rendering source. // This should not affect whether src2 is on an atlas or not. for i := 0; i < atlas.BaseCountToPutOnAtlas; i++ { if err := atlas.PutImagesOnAtlasForTesting(ui.GraphicsDriverForTesting()); err != nil { t.Fatal(err) } if got, want := src2.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } } // Update the count with using src2 as a rendering source. for i := 0; i < atlas.BaseCountToPutOnAtlas; i++ { if err := atlas.PutImagesOnAtlasForTesting(ui.GraphicsDriverForTesting()); err != nil { t.Fatal(err) } dst.DrawTriangles([graphics.ShaderImageCount]*atlas.Image{src2}, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, atlas.NearestFilterShader, nil, false) if got, want := src2.IsOnAtlasForTesting(), false; got != want { t.Errorf("got: %v, want: %v", got, want) } } if err := atlas.PutImagesOnAtlasForTesting(ui.GraphicsDriverForTesting()); err != nil { t.Fatal(err) } if got, want := src2.IsOnAtlasForTesting(), true; got != want { t.Errorf("got: %v, want: %v", got, want) } } func TestImageWritePixelsModify(t *testing.T) { for _, typ := range []atlas.ImageType{atlas.ImageTypeRegular, atlas.ImageTypeVolatile, atlas.ImageTypeUnmanaged} { const size = 16 img := atlas.NewImage(size, size, typ) defer img.MarkDisposed() pix := make([]byte, 4*size*size) for j := 0; j < size; j++ { for i := 0; i < size; i++ { pix[4*(i+j*size)] = byte(i + j) pix[4*(i+j*size)+1] = byte(i + j) pix[4*(i+j*size)+2] = byte(i + j) pix[4*(i+j*size)+3] = byte(i + j) } } img.WritePixels(pix, 0, 0, size, size) // Modify pix after WritePixels. for j := 0; j < size; j++ { for i := 0; i < size; i++ { pix[4*(i+j*size)] = 0 pix[4*(i+j*size)+1] = 0 pix[4*(i+j*size)+2] = 0 pix[4*(i+j*size)+3] = 0 } } // Check the pixels are the original ones. pix = make([]byte, 4*size*size) if err := img.ReadPixels(ui.GraphicsDriverForTesting(), pix); err != nil { t.Fatal(err) } for j := 0; j < size; j++ { for i := 0; i < size; i++ { want := color.RGBA{byte(i + j), byte(i + j), byte(i + j), byte(i + j)} r := pix[4*(size*j+i)] g := pix[4*(size*j+i)+1] b := pix[4*(size*j+i)+2] a := pix[4*(size*j+i)+3] got := color.RGBA{r, g, b, a} if got != want { t.Errorf("Type: %d, At(%d, %d): got: %v, want: %v", typ, i, j, got, want) } } } } } // TODO: Add tests to extend image on an atlas out of the main loop