// Copyright 2019 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package vector provides functions for vector graphics rendering. // // This package is under experiments and the API might be changed with breaking backward compatibility. package vector import ( "math" "github.com/hajimehoshi/ebiten/v2" ) // Direction represents clockwise or counterclockwise. type Direction int const ( Clockwise Direction = iota CounterClockwise ) type point struct { x float32 y float32 } // Path represents a collection of path segments. type Path struct { segs [][]point cur point } // MoveTo skips the current position of the path to the given position (x, y) without adding any strokes. func (p *Path) MoveTo(x, y float32) { p.cur = point{x: x, y: y} p.segs = append(p.segs, []point{p.cur}) } // LineTo adds a line segument to the path, which starts from the current position and ends to the given position (x, y). // // LineTo updates the current position to (x, y). func (p *Path) LineTo(x, y float32) { if len(p.segs) == 0 { p.segs = append(p.segs, []point{{x: x, y: y}}) p.cur = point{x: x, y: y} return } seg := p.segs[len(p.segs)-1] if seg[len(seg)-1].x != x || seg[len(seg)-1].y != y { p.segs[len(p.segs)-1] = append(seg, point{x: x, y: y}) } p.cur = point{x: x, y: y} } // QuadTo adds a quadratic Bézier curve to the path. // (x1, y1) is the control point, and (x2, y2) is the destination. // // QuadTo updates the current position to (x2, y2). func (p *Path) QuadTo(x1, y1, x2, y2 float32) { p.quadTo(point{x: x1, y: y1}, point{x: x2, y: y2}, 0) } // lineForTwoPoints returns parameters for a line passing through p0 and p1. func lineForTwoPoints(p0, p1 point) (a, b, c float32) { // Line passing through p0 and p1 in the form of ax + by + c = 0 a = p1.y - p0.y b = -(p1.x - p0.x) c = (p1.x-p0.x)*p0.y - (p1.y-p0.y)*p0.x return } // isPointCloseToSegment detects the distance between a segment (x0, y0)-(x1, y1) and a point (x, y) is less than allow. func isPointCloseToSegment(p, p0, p1 point, allow float32) bool { a, b, c := lineForTwoPoints(p0, p1) // The distance between a line ax+by+c=0 and (x0, y0) is // |ax0 + by0 + c| / √(a² + b²) return allow*allow*(a*a+b*b) > (a*p.x+b*p.y+c)*(a*p.x+b*p.y+c) } // crossingPointForTwoLines returns a crossing point for two lines. func crossingPointForTwoLines(p00, p01, p10, p11 point) point { a0, b0, c0 := lineForTwoPoints(p00, p01) a1, b1, c1 := lineForTwoPoints(p10, p11) det := a0*b1 - a1*b0 return point{ x: (b0*c1 - b1*c0) / det, y: (a1*c0 - a0*c1) / det, } } func (p *Path) quadTo(p1, p2 point, level int) { if level > 10 { return } p0 := p.cur if isPointCloseToSegment(p1, p0, p2, 0.5) { p.LineTo(p2.x, p2.y) return } p01 := point{ x: (p0.x + p1.x) / 2, y: (p0.y + p1.y) / 2, } p12 := point{ x: (p1.x + p2.x) / 2, y: (p1.y + p2.y) / 2, } p012 := point{ x: (p01.x + p12.x) / 2, y: (p01.y + p12.y) / 2, } p.quadTo(p01, p012, level+1) p.quadTo(p12, p2, level+1) } // CubicTo adds a cubic Bézier curve to the path. // (x1, y1) and (x2, y2) are the control points, and (x3, y3) is the destination. // // CubicTo updates the current position to (x3, y3). func (p *Path) CubicTo(x1, y1, x2, y2, x3, y3 float32) { p.cubicTo(point{x: x1, y: y1}, point{x: x2, y: y2}, point{x: x3, y: y3}, 0) } func (p *Path) cubicTo(p1, p2, p3 point, level int) { if level > 10 { return } p0 := p.cur if isPointCloseToSegment(p1, p0, p3, 0.5) && isPointCloseToSegment(p2, p0, p3, 0.5) { p.LineTo(p3.x, p3.y) return } p01 := point{ x: (p0.x + p1.x) / 2, y: (p0.y + p1.y) / 2, } p12 := point{ x: (p1.x + p2.x) / 2, y: (p1.y + p2.y) / 2, } p23 := point{ x: (p2.x + p3.x) / 2, y: (p2.y + p3.y) / 2, } p012 := point{ x: (p01.x + p12.x) / 2, y: (p01.y + p12.y) / 2, } p123 := point{ x: (p12.x + p23.x) / 2, y: (p12.y + p23.y) / 2, } p0123 := point{ x: (p012.x + p123.x) / 2, y: (p012.y + p123.y) / 2, } p.cubicTo(p01, p012, p0123, level+1) p.cubicTo(p123, p23, p3, level+1) } func normalize(p point) point { len := float32(math.Hypot(float64(p.x), float64(p.y))) return point{x: p.x / len, y: p.y / len} } func cross(p0, p1 point) float32 { return p0.x*p1.y - p1.x*p0.y } // ArcTo adds an arc curve to the path. (x1, y1) is the control point, and (x2, y2) is the destination. // // ArcTo updates the current position to (x2, y2). func (p *Path) ArcTo(x1, y1, x2, y2, radius float32) { d0 := point{ x: p.cur.x - x1, y: p.cur.y - y1, } d1 := point{ x: x2 - x1, y: y2 - y1, } d0 = normalize(d0) d1 = normalize(d1) // theta is the angle between two vectors d0 and d1. theta := math.Acos(float64(d0.x*d1.x + d0.y*d1.y)) // TODO: When theta is bigger than π/2, the arc should be split into two. // dist is the distance between the control point and the arc's begenning and ending points. dist := radius / float32(math.Tan(theta/2)) // TODO: What if dist is too big? // (ax0, ay0) is the start of the arc. ax0 := x1 + d0.x*dist ay0 := y1 + d0.y*dist var cx, cy, a0, a1 float32 var dir Direction if cross(d0, d1) >= 0 { cx = ax0 - d0.y*radius cy = ay0 + d0.x*radius a0 = float32(math.Atan2(float64(-d0.x), float64(d0.y))) a1 = float32(math.Atan2(float64(d1.x), float64(-d1.y))) dir = CounterClockwise } else { cx = ax0 + d0.y*radius cy = ay0 - d0.x*radius a0 = float32(math.Atan2(float64(d0.x), float64(-d0.y))) a1 = float32(math.Atan2(float64(-d1.x), float64(d1.y))) dir = Clockwise } p.Arc(cx, cy, radius, a0, a1, dir) p.LineTo(x2, y2) } // Arc adds an arc to the path. // (x, y) is the center of the arc. // // Arc updates the current position to the end of the arc. func (p *Path) Arc(x, y, radius, startAngle, endAngle float32, dir Direction) { // Adjust the angles. var da float64 if dir == Clockwise { for startAngle > endAngle { endAngle += 2 * math.Pi } da = float64(endAngle - startAngle) } else { for startAngle < endAngle { startAngle += 2 * math.Pi } da = float64(startAngle - endAngle) } if da >= 2*math.Pi { da = 2 * math.Pi if dir == Clockwise { endAngle = startAngle + 2*math.Pi } else { startAngle = endAngle + 2*math.Pi } } // If the angle is big, splict this into multiple Arc calls. if da > math.Pi/2 { const delta = math.Pi / 3 a := float64(startAngle) if dir == Clockwise { for { p.Arc(x, y, radius, float32(a), float32(math.Min(a+delta, float64(endAngle))), dir) if a+delta >= float64(endAngle) { break } a += delta } } else { for { p.Arc(x, y, radius, float32(a), float32(math.Max(a-delta, float64(endAngle))), dir) if a-delta <= float64(endAngle) { break } a -= delta } } return } sin0, cos0 := math.Sincos(float64(startAngle)) x0 := x + radius*float32(cos0) y0 := y + radius*float32(sin0) sin1, cos1 := math.Sincos(float64(endAngle)) x1 := x + radius*float32(cos1) y1 := y + radius*float32(sin1) p.LineTo(x0, y0) // Calculate the control points for an approximated Bézier curve. // See https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/beziers. l := radius * float32(math.Tan(da/4)*4/3) var cx0, cy0, cx1, cy1 float32 if dir == Clockwise { cx0 = x0 + l*float32(-sin0) cy0 = y0 + l*float32(cos0) cx1 = x1 + l*float32(sin1) cy1 = y1 + l*float32(-cos1) } else { cx0 = x0 + l*float32(sin0) cy0 = y0 + l*float32(-cos0) cx1 = x1 + l*float32(-sin1) cy1 = y1 + l*float32(cos1) } p.CubicTo(cx0, cy0, cx1, cy1, x1, y1) } // AppendVerticesAndIndicesForFilling appends vertices and indices to fill this path and returns them. // AppendVerticesAndIndicesForFilling works in a similar way to the built-in append function. // If the arguments are nils, AppendVerticesAndIndicesForFilling returns new slices. // // The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1. // // The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with EvenOdd fill mode // in order to render a complex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon. // // The returned vertices and indices should be rendered with a solid (non-transparent) color with the default Blend (source-over). // Otherwise, there is no guarantee about the rendering result. func (p *Path) AppendVerticesAndIndicesForFilling(vertices []ebiten.Vertex, indices []uint16) ([]ebiten.Vertex, []uint16) { // TODO: Add tests. base := uint16(len(vertices)) for _, seg := range p.segs { if len(seg) < 3 { continue } for i, pt := range seg { vertices = append(vertices, ebiten.Vertex{ DstX: pt.x, DstY: pt.y, SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }) if i < 2 { continue } indices = append(indices, base, base+uint16(i-1), base+uint16(i)) } base += uint16(len(seg)) } return vertices, indices } // LineCap represents the way in which how the ends of the stroke are rendered. type LineCap int const ( LineCapButt LineCap = iota LineCapRound LineCapSquare ) // LineJoin represents the way in which how two segments are joined. type LineJoin int const ( LineJoinMiter LineJoin = iota LineJoinBevel LineJoinRound ) // StokeOptions is options to render a stroke. type StrokeOptions struct { // Width is the stroke width in pixels. Width float32 // LineCap is the way in which how the ends of the stroke are rendered. // The default (zero) value is LineCapButt. LineCap LineCap // LineJoin is the way in which how two segments are joined. // The default (zero) value is LineJoiMiter. LineJoin LineJoin // MiterLimit is the miter limit for LineJoinMiter. // For details, see https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-miterlimit. // // The default (zero) value is 0. MiterLimit float32 } // AppendVerticesAndIndicesForStroke appends vertices and indices to render a stroke of this path and returns them. // AppendVerticesAndIndicesForStroke works in a similar way to the built-in append function. // If the arguments are nils, AppendVerticesAndIndicesForStroke returns new slices. // // The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1. // // The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with FillAll fill mode, not EvenOdd fill mode. func (p *Path) AppendVerticesAndIndicesForStroke(vertices []ebiten.Vertex, indices []uint16, op *StrokeOptions) ([]ebiten.Vertex, []uint16) { if op == nil { return vertices, indices } for _, seg := range p.segs { if len(seg) < 2 { continue } var rects [][4]point for i := 0; i < len(seg)-1; i++ { pt := seg[i] if seg[i+1] == pt { continue } nextPt := seg[i+1] dx := nextPt.x - pt.x dy := nextPt.y - pt.y dist := float32(math.Sqrt(float64(dx*dx + dy*dy))) extX := (dy) * op.Width / 2 / dist extY := (-dx) * op.Width / 2 / dist rects = append(rects, [4]point{ { x: pt.x + extX, y: pt.y + extY, }, { x: nextPt.x + extX, y: nextPt.y + extY, }, { x: pt.x - extX, y: pt.y - extY, }, { x: nextPt.x - extX, y: nextPt.y - extY, }, }) } for i, rect := range rects { idx := uint16(len(vertices)) for _, pt := range rect { vertices = append(vertices, ebiten.Vertex{ DstX: pt.x, DstY: pt.y, SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }) } indices = append(indices, idx, idx+1, idx+2, idx+1, idx+2, idx+3) if i >= len(rects)-1 { continue } // Add line joints. nextRect := rects[i+1] // c is the center of the 'end' edge of the current rect (= the second point of the segment). c := point{ x: (rect[1].x + rect[3].x) / 2, y: (rect[1].y + rect[3].y) / 2, } // Note that the Y direction and the angle direction are opposite from math's. a0 := float32(math.Atan2(float64(rect[1].y-c.y), float64(rect[1].x-c.x))) a1 := float32(math.Atan2(float64(nextRect[0].y-c.y), float64(nextRect[0].x-c.x))) da := a1 - a0 for da < 0 { da += 2 * math.Pi } if da == 0 { continue } switch op.LineJoin { case LineJoinMiter: delta := math.Pi - da exceed := float32(math.Abs(1/math.Sin(float64(delta/2)))) > op.MiterLimit var quad Path quad.MoveTo(c.x, c.y) if da < math.Pi { quad.LineTo(rect[1].x, rect[1].y) if !exceed { pt := crossingPointForTwoLines(rect[0], rect[1], nextRect[0], nextRect[1]) quad.LineTo(pt.x, pt.y) } quad.LineTo(nextRect[0].x, nextRect[0].y) } else { quad.LineTo(rect[3].x, rect[3].y) if !exceed { pt := crossingPointForTwoLines(rect[2], rect[3], nextRect[2], nextRect[3]) quad.LineTo(pt.x, pt.y) } quad.LineTo(nextRect[2].x, nextRect[2].y) } vertices, indices = quad.AppendVerticesAndIndicesForFilling(vertices, indices) case LineJoinBevel: var tri Path tri.MoveTo(c.x, c.y) if da < math.Pi { tri.LineTo(rect[1].x, rect[1].y) tri.LineTo(nextRect[0].x, nextRect[0].y) } else { tri.LineTo(rect[3].x, rect[3].y) tri.LineTo(nextRect[2].x, nextRect[2].y) } vertices, indices = tri.AppendVerticesAndIndicesForFilling(vertices, indices) case LineJoinRound: var arc Path arc.MoveTo(c.x, c.y) if da < math.Pi { arc.Arc(c.x, c.y, op.Width/2, a0, a1, Clockwise) } else { arc.Arc(c.x, c.y, op.Width/2, a0+math.Pi, a1+math.Pi, CounterClockwise) } vertices, indices = arc.AppendVerticesAndIndicesForFilling(vertices, indices) } } if len(rects) == 0 { continue } switch op.LineCap { case LineCapButt: // Do nothing. case LineCapRound: startR, endR := rects[0], rects[len(rects)-1] { c := point{ x: (startR[0].x + startR[2].x) / 2, y: (startR[0].y + startR[2].y) / 2, } a := float32(math.Atan2(float64(startR[0].y-startR[2].y), float64(startR[0].x-startR[2].x))) var arc Path arc.MoveTo(startR[0].x, startR[0].y) arc.Arc(c.x, c.y, op.Width/2, a, a+math.Pi, CounterClockwise) vertices, indices = arc.AppendVerticesAndIndicesForFilling(vertices, indices) } { c := point{ x: (endR[1].x + endR[3].x) / 2, y: (endR[1].y + endR[3].y) / 2, } a := float32(math.Atan2(float64(endR[1].y-endR[3].y), float64(endR[1].x-endR[3].x))) var arc Path arc.MoveTo(endR[1].x, endR[1].y) arc.Arc(c.x, c.y, op.Width/2, a, a+math.Pi, Clockwise) vertices, indices = arc.AppendVerticesAndIndicesForFilling(vertices, indices) } case LineCapSquare: startR, endR := rects[0], rects[len(rects)-1] { a := math.Atan2(float64(startR[0].y-startR[1].y), float64(startR[0].x-startR[1].x)) s, c := math.Sincos(a) dx, dy := float32(c)*op.Width/2, float32(s)*op.Width/2 var quad Path quad.MoveTo(startR[0].x, startR[0].y) quad.LineTo(startR[0].x+dx, startR[0].y+dy) quad.LineTo(startR[2].x+dx, startR[2].y+dy) quad.LineTo(startR[2].x, startR[2].y) vertices, indices = quad.AppendVerticesAndIndicesForFilling(vertices, indices) } { a := math.Atan2(float64(endR[1].y-endR[0].y), float64(endR[1].x-endR[0].x)) s, c := math.Sincos(a) dx, dy := float32(c)*op.Width/2, float32(s)*op.Width/2 var quad Path quad.MoveTo(endR[1].x, endR[1].y) quad.LineTo(endR[1].x+dx, endR[1].y+dy) quad.LineTo(endR[3].x+dx, endR[3].y+dy) quad.LineTo(endR[3].x, endR[3].y) vertices, indices = quad.AppendVerticesAndIndicesForFilling(vertices, indices) } } } return vertices, indices }