// Copyright 2016 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ebiten_test import ( "bytes" "errors" "image" "image/color" "image/draw" _ "image/png" "math" "os" "testing" . "github.com/hajimehoshi/ebiten" "github.com/hajimehoshi/ebiten/ebitenutil" "github.com/hajimehoshi/ebiten/examples/resources/images" "github.com/hajimehoshi/ebiten/internal/graphics" "github.com/hajimehoshi/ebiten/internal/testflock" ) func TestMain(m *testing.M) { testflock.Lock() defer testflock.Unlock() code := 0 // Run an Ebiten process so that (*Image).At is available. regularTermination := errors.New("regular termination") f := func(screen *Image) error { code = m.Run() return regularTermination } if err := Run(f, 320, 240, 1, "Test"); err != nil && err != regularTermination { panic(err) } os.Exit(code) } func openEbitenImage() (*Image, image.Image, error) { img, _, err := image.Decode(bytes.NewReader(images.Ebiten_png)) if err != nil { return nil, nil, err } eimg, err := NewImageFromImage(img, FilterNearest) if err != nil { return nil, nil, err } return eimg, img, nil } func abs(x int) int { if x < 0 { return -x } return x } // sameColors compares c1 and c2 and returns a boolean value indicating // if the two colors are (almost) same. // // Pixels read from GPU might include errors (#492), and // sameColors considers such errors as delta. func sameColors(c1, c2 color.RGBA, delta int) bool { return abs(int(c1.R)-int(c2.R)) <= delta && abs(int(c1.G)-int(c2.G)) <= delta && abs(int(c1.B)-int(c2.B)) <= delta && abs(int(c1.A)-int(c2.A)) <= delta } func TestImagePixels(t *testing.T) { img0, img, err := openEbitenImage() if err != nil { t.Fatal(err) return } if got := img0.Bounds().Size(); got != img.Bounds().Size() { t.Fatalf("img size: got %d; want %d", got, img.Bounds().Size()) } w, h := img0.Bounds().Size().X, img0.Bounds().Size().Y // Check out of range part w2, h2 := graphics.InternalImageSize(w), graphics.InternalImageSize(h) for j := -100; j < h2+100; j++ { for i := -100; i < w2+100; i++ { got := img0.At(i, j) want := color.RGBAModel.Convert(img.At(i, j)) if got != want { t.Errorf("img0 At(%d, %d): got %#v; want %#v", i, j, got, want) } } } } func TestImageComposition(t *testing.T) { img2Color := color.NRGBA{0x24, 0x3f, 0x6a, 0x88} img3Color := color.NRGBA{0x85, 0xa3, 0x08, 0xd3} // TODO: Rename this to img0 img1, _, err := openEbitenImage() if err != nil { t.Fatal(err) return } w, h := img1.Bounds().Size().X, img1.Bounds().Size().Y img2, err := NewImage(w, h, FilterNearest) if err != nil { t.Fatal(err) return } img3, err := NewImage(w, h, FilterNearest) if err != nil { t.Fatal(err) return } if err := img2.Fill(img2Color); err != nil { t.Fatal(err) return } if err := img3.Fill(img3Color); err != nil { t.Fatal(err) return } img_12_3, err := NewImage(w, h, FilterNearest) if err != nil { t.Fatal(err) return } if err := img2.DrawImage(img1, nil); err != nil { t.Fatal(err) return } if err := img3.DrawImage(img2, nil); err != nil { t.Fatal(err) return } if err := img_12_3.DrawImage(img3, nil); err != nil { t.Fatal(err) return } if err := img2.Fill(img2Color); err != nil { t.Fatal(err) return } if err := img3.Fill(img3Color); err != nil { t.Fatal(err) return } img_1_23, err := NewImage(w, h, FilterNearest) if err != nil { t.Fatal(err) return } if err := img3.DrawImage(img2, nil); err != nil { t.Fatal(err) return } if err := img3.DrawImage(img1, nil); err != nil { t.Fatal(err) return } if err := img_1_23.DrawImage(img3, nil); err != nil { t.Fatal(err) return } for j := 0; j < h; j++ { for i := 0; i < w; i++ { c1 := img_12_3.At(i, j).(color.RGBA) c2 := img_1_23.At(i, j).(color.RGBA) if !sameColors(c1, c2, 1) { t.Errorf("img_12_3.At(%d, %d) = %#v; img_1_23.At(%[1]d, %[2]d) = %#[4]v", i, j, c1, c2) } if c1.A == 0 { t.Fatalf("img_12_3.At(%d, %d).A = 0; nothing is rendered?", i, j) } if c2.A == 0 { t.Fatalf("img_1_23.At(%d, %d).A = 0; nothing is rendered?", i, j) } } } } func TestImageSelf(t *testing.T) { // Note that mutex usages: without defer, unlocking is not called when panicing. defer func() { if r := recover(); r == nil { t.Errorf("DrawImage must panic but not") } }() img, _, err := openEbitenImage() if err != nil { t.Fatal(err) return } img.DrawImage(img, nil) } func TestImageScale(t *testing.T) { for _, scale := range []int{2, 3, 4} { img0, _, err := openEbitenImage() if err != nil { t.Fatal(err) return } w, h := img0.Size() img1, err := NewImage(w*scale, h*scale, FilterNearest) if err != nil { t.Fatal(err) return } op := &DrawImageOptions{} op.GeoM.Scale(float64(scale), float64(scale)) if err := img1.DrawImage(img0, op); err != nil { t.Fatal(err) return } for j := 0; j < h*scale; j++ { for i := 0; i < w*scale; i++ { c0 := img0.At(i/scale, j/scale).(color.RGBA) c1 := img1.At(i, j).(color.RGBA) if c0 != c1 { t.Fatalf("img0.At(%[1]d, %[2]d) should equal to img1.At(%[3]d, %[4]d) (with scale %[5]d) but not: %[6]v vs %[7]v", i/2, j/2, i, j, scale, c0, c1) } } } } } func TestImage90DegreeRotate(t *testing.T) { img0, _, err := openEbitenImage() if err != nil { t.Fatal(err) return } w, h := img0.Size() img1, err := NewImage(h, w, FilterNearest) if err != nil { t.Fatal(err) return } op := &DrawImageOptions{} op.GeoM.Rotate(math.Pi / 2) op.GeoM.Translate(float64(h), 0) if err := img1.DrawImage(img0, op); err != nil { t.Fatal(err) return } for j := 0; j < h; j++ { for i := 0; i < w; i++ { c0 := img0.At(i, j).(color.RGBA) c1 := img1.At(h-j-1, i).(color.RGBA) if c0 != c1 { t.Errorf("img0.At(%[1]d, %[2]d) should equal to img1.At(%[3]d, %[4]d) but not: %[5]v vs %[6]v", i, j, h-j-1, i, c0, c1) } } } } func TestImageDotByDotInversion(t *testing.T) { img0, _, err := openEbitenImage() if err != nil { t.Fatal(err) return } w, h := img0.Size() img1, err := NewImage(w, h, FilterNearest) if err != nil { t.Fatal(err) return } op := &DrawImageOptions{} op.GeoM.Rotate(math.Pi) op.GeoM.Translate(float64(w), float64(h)) if err := img1.DrawImage(img0, op); err != nil { t.Fatal(err) return } for j := 0; j < h; j++ { for i := 0; i < w; i++ { c0 := img0.At(i, j).(color.RGBA) c1 := img1.At(w-i-1, h-j-1).(color.RGBA) if c0 != c1 { t.Errorf("img0.At(%[1]d, %[2]d) should equal to img1.At(%[3]d, %[4]d) but not: %[5]v vs %[6]v", i, j, w-i-1, h-j-1, c0, c1) } } } } func TestImageReplacePixels(t *testing.T) { // Create a dummy image so that the shared texture is used and origImg's position is shfited. dummyImg, _ := NewImageFromImage(image.NewRGBA(image.Rect(0, 0, 16, 16)), FilterDefault) defer dummyImg.Dispose() _, origImg, err := openEbitenImage() if err != nil { t.Fatal(err) return } // Convert to *image.RGBA just in case. img := image.NewRGBA(origImg.Bounds()) draw.Draw(img, img.Bounds(), origImg, image.ZP, draw.Src) size := img.Bounds().Size() img0, err := NewImage(size.X, size.Y, FilterNearest) if err != nil { t.Fatal(err) return } if err := img0.ReplacePixels(img.Pix); err != nil { t.Fatal(err) return } for j := 0; j < img0.Bounds().Size().Y; j++ { for i := 0; i < img0.Bounds().Size().X; i++ { got := img0.At(i, j) want := img.At(i, j) if got != want { t.Errorf("img0 At(%d, %d): got %#v; want %#v", i, j, got, want) } } } p := make([]uint8, 4*size.X*size.Y) for i := range p { p[i] = 0x80 } if err := img0.ReplacePixels(p); err != nil { t.Fatal(err) return } // Even if p is changed after calling ReplacePixel, img0 uses the original values. for i := range p { p[i] = 0 } for j := 0; j < img0.Bounds().Size().Y; j++ { for i := 0; i < img0.Bounds().Size().X; i++ { got := img0.At(i, j) want := color.RGBA{0x80, 0x80, 0x80, 0x80} if got != want { t.Errorf("img0 At(%d, %d): got %#v; want %#v", i, j, got, want) } } } } func TestImageReplacePixelsNil(t *testing.T) { defer func() { if r := recover(); r == nil { t.Errorf("ReplacePixels(nil) must panic") } }() img, err := NewImage(16, 16, FilterNearest) if err != nil { t.Fatal(err) return } img.Fill(color.White) img.ReplacePixels(nil) } func TestImageDispose(t *testing.T) { img, err := NewImage(16, 16, FilterNearest) if err != nil { t.Fatal(err) return } img.Fill(color.White) if err := img.Dispose(); err != nil { t.Errorf("img.Dipose() returns error: %v", err) } // The color is transparent (color.RGBA{}). // Note that the value's type must be color.RGBA. got := img.At(0, 0) want := color.RGBA{} if got != want { t.Errorf("img.At(0, 0) got: %v, want: %v", got, want) } } func min(a, b int) int { if a < b { return a } return b } func TestImageCompositeModeLighter(t *testing.T) { img0, _, err := openEbitenImage() if err != nil { t.Fatal(err) return } w, h := img0.Size() img1, err := NewImage(w, h, FilterNearest) if err != nil { t.Fatal(err) return } if err := img1.Fill(color.RGBA{0x01, 0x02, 0x03, 0x04}); err != nil { t.Fatal(err) return } op := &DrawImageOptions{} op.CompositeMode = CompositeModeLighter if err := img1.DrawImage(img0, op); err != nil { t.Fatal(err) return } for j := 0; j < img1.Bounds().Size().Y; j++ { for i := 0; i < img1.Bounds().Size().X; i++ { got := img1.At(i, j).(color.RGBA) want := img0.At(i, j).(color.RGBA) want.R = uint8(min(0xff, int(want.R)+1)) want.G = uint8(min(0xff, int(want.G)+2)) want.B = uint8(min(0xff, int(want.B)+3)) want.A = uint8(min(0xff, int(want.A)+4)) if got != want { t.Errorf("img1 At(%d, %d): got %#v; want %#v", i, j, got, want) } } } } func TestNewImageFromEbitenImage(t *testing.T) { img, _, err := openEbitenImage() if err != nil { t.Fatal(err) return } if _, err := NewImageFromImage(img, FilterNearest); err != nil { t.Errorf("NewImageFromImage returns error: %v", err) } } func TestNewImageFromSubImage(t *testing.T) { _, img, err := openEbitenImage() if err != nil { t.Fatal(err) return } w, h := img.Bounds().Dx(), img.Bounds().Dy() subImg := img.(*image.NRGBA).SubImage(image.Rect(1, 1, w-1, h-1)) eimg, err := NewImageFromImage(subImg, FilterNearest) if err != nil { t.Fatal(err) return } sw, sh := subImg.Bounds().Dx(), subImg.Bounds().Dy() w2, h2 := eimg.Size() if w2 != sw { t.Errorf("eimg Width: got %#v; want %#v", w2, sw) } if h2 != sh { t.Errorf("eimg Width: got %#v; want %#v", h2, sh) } for j := 0; j < h2; j++ { for i := 0; i < w2; i++ { got := eimg.At(i, j) want := color.RGBAModel.Convert(img.At(i+1, j+1)) if got != want { t.Errorf("img0 At(%d, %d): got %#v; want %#v", i, j, got, want) } } } } type mutableRGBA struct { r, g, b, a uint8 } func (c *mutableRGBA) RGBA() (r, g, b, a uint32) { return uint32(c.r) * 0x101, uint32(c.g) * 0x101, uint32(c.b) * 0x101, uint32(c.a) * 0x101 } func TestImageFill(t *testing.T) { w, h := 10, 10 img, err := NewImage(w, h, FilterNearest) if err != nil { t.Fatal(err) return } clr := &mutableRGBA{0x80, 0x80, 0x80, 0x80} if err := img.Fill(clr); err != nil { t.Fatal(err) return } clr.r = 0 for j := 0; j < h; j++ { for i := 0; i < w; i++ { got := img.At(i, j) want := color.RGBA{0x80, 0x80, 0x80, 0x80} if got != want { t.Errorf("img At(%d, %d): got %#v; want %#v", i, j, got, want) } } } } // Issue #740 func TestImageClear(t *testing.T) { const w, h = 128, 256 img, err := NewImage(w, h, FilterNearest) if err != nil { t.Fatal(err) return } img.Fill(color.White) for j := 0; j < h; j++ { for i := 0; i < w; i++ { got := img.At(i, j) want := color.RGBA{0xff, 0xff, 0xff, 0xff} if got != want { t.Errorf("img At(%d, %d): got %#v; want %#v", i, j, got, want) } } } img.Clear() for j := 0; j < h; j++ { for i := 0; i < w; i++ { got := img.At(i, j) want := color.RGBA{} if got != want { t.Errorf("img At(%d, %d): got %#v; want %#v", i, j, got, want) } } } } // Issue #317, #558, #724 func TestImageEdge(t *testing.T) { const ( img0Width = 16 img0Height = 16 img0InnerWidth = 10 img0InnerHeight = 10 img0OffsetWidth = (img0Width - img0InnerWidth) / 2 img0OffsetHeight = (img0Height - img0InnerHeight) / 2 img1Width = 32 img1Height = 32 ) img0, _ := NewImage(img0Width, img0Height, FilterNearest) pixels := make([]uint8, 4*img0Width*img0Height) for j := 0; j < img0Height; j++ { for i := 0; i < img0Width; i++ { idx := 4 * (i + j*img0Width) switch { case img0OffsetWidth <= i && i < img0Width-img0OffsetWidth && img0OffsetHeight <= j && j < img0Height-img0OffsetHeight: pixels[idx] = 0xff pixels[idx+1] = 0 pixels[idx+2] = 0 pixels[idx+3] = 0xff default: pixels[idx] = 0 pixels[idx+1] = 0xff pixels[idx+2] = 0 pixels[idx+3] = 0xff } } } img0.ReplacePixels(pixels) img1, _ := NewImage(img1Width, img1Height, FilterDefault) red := color.RGBA{0xff, 0, 0, 0xff} transparent := color.RGBA{0, 0, 0, 0} angles := []float64{} for a := 0; a < 1440; a++ { angles = append(angles, float64(a)/1440*2*math.Pi) } for a := 0; a < 4096; a += 3 { // a++ should be fine, but it takes long to test. angles = append(angles, float64(a)/4096*2*math.Pi) } img0Sub := img0.SubImage(image.Rect(img0OffsetWidth, img0OffsetHeight, img0Width-img0OffsetWidth, img0Height-img0OffsetHeight)).(*Image) for _, s := range []float64{1, 0.5, 0.25} { for _, f := range []Filter{FilterNearest, FilterLinear} { for _, a := range angles { for _, testDrawTriangles := range []bool{false, true} { img1.Clear() w, h := img0Sub.Size() b := img0Sub.Bounds() var geo GeoM geo.Translate(-float64(w)/2, -float64(h)/2) geo.Scale(s, s) geo.Rotate(a) geo.Translate(img1Width/2, img1Height/2) if !testDrawTriangles { op := &DrawImageOptions{} op.GeoM = geo op.Filter = f img1.DrawImage(img0Sub, op) } else { op := &DrawTrianglesOptions{} dx0, dy0 := geo.Apply(0, 0) dx1, dy1 := geo.Apply(float64(w), 0) dx2, dy2 := geo.Apply(0, float64(h)) dx3, dy3 := geo.Apply(float64(w), float64(h)) vs := []Vertex{ { DstX: float32(dx0), DstY: float32(dy0), SrcX: float32(b.Min.X), SrcY: float32(b.Min.Y), ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, { DstX: float32(dx1), DstY: float32(dy1), SrcX: float32(b.Max.X), SrcY: float32(b.Min.Y), ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, { DstX: float32(dx2), DstY: float32(dy2), SrcX: float32(b.Min.X), SrcY: float32(b.Max.Y), ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, { DstX: float32(dx3), DstY: float32(dy3), SrcX: float32(b.Max.X), SrcY: float32(b.Max.Y), ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, } is := graphics.QuadIndices() op.Filter = f img1.DrawTriangles(vs, is, img0Sub, op) } allTransparent := true for j := 0; j < img1Height; j++ { for i := 0; i < img1Width; i++ { c := img1.At(i, j) if c == transparent { continue } allTransparent = false switch f { case FilterNearest: if c == red { continue } case FilterLinear: if _, g, b, _ := c.RGBA(); g == 0 && b == 0 { continue } } t.Fatalf("img1.At(%d, %d) (filter: %d, scale: %f, angle: %f, draw-triangles?: %t) want: red or transparent, got: %v", i, j, f, s, a, testDrawTriangles, c) } } if allTransparent { t.Fatalf("img1 (filter: %d, scale: %f, angle: %f, draw-triangles?: %t) is transparent but should not", f, s, a, testDrawTriangles) } } } } } } // Issue #419 func TestImageTooManyFill(t *testing.T) { const width = 1024 indexToColor := func(index int) uint8 { return uint8((17*index + 0x40) % 256) } src, _ := NewImage(1, 1, FilterNearest) dst, _ := NewImage(width, 1, FilterNearest) for i := 0; i < width; i++ { c := indexToColor(i) src.Fill(color.RGBA{c, c, c, 0xff}) op := &DrawImageOptions{} op.GeoM.Translate(float64(i), 0) dst.DrawImage(src, op) } for i := 0; i < width; i++ { c := indexToColor(i) got := dst.At(i, 0).(color.RGBA) want := color.RGBA{c, c, c, 0xff} if !sameColors(got, want, 1) { t.Errorf("dst.At(%d, %d): got %#v, want: %#v", i, 0, got, want) } } } func BenchmarkDrawImage(b *testing.B) { img0, _ := NewImage(16, 16, FilterNearest) img1, _ := NewImage(16, 16, FilterNearest) op := &DrawImageOptions{} for i := 0; i < b.N; i++ { img0.DrawImage(img1, op) } } func TestImageLinearGradiation(t *testing.T) { img0, _ := NewImage(2, 2, FilterNearest) img0.ReplacePixels([]byte{ 0xff, 0x00, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }) const w, h = 32, 32 img1, _ := NewImage(w, h, FilterNearest) op := &DrawImageOptions{} op.GeoM.Scale(w, h) op.GeoM.Translate(-w/4, -h/4) op.Filter = FilterLinear img1.DrawImage(img0, op) for j := 1; j < h-1; j++ { for i := 1; i < w-1; i++ { c := img1.At(i, j).(color.RGBA) if c.R == 0 || c.R == 0xff { t.Errorf("img1.At(%d, %d).R must be in between 0x01 and 0xfe but %#v", i, j, c) } } } } func TestImageLinearEdges(t *testing.T) { src, _ := NewImage(32, 32, FilterDefault) dst, _ := NewImage(64, 64, FilterDefault) src.Fill(color.RGBA{0, 0xff, 0, 0xff}) ebitenutil.DrawRect(src, 8, 8, 16, 16, color.RGBA{0xff, 0, 0, 0xff}) op := &DrawImageOptions{} op.GeoM.Translate(8, 8) op.GeoM.Scale(2, 2) op.Filter = FilterLinear dst.DrawImage(src.SubImage(image.Rect(8, 8, 24, 24)).(*Image), op) for j := 0; j < 64; j++ { for i := 0; i < 64; i++ { c := dst.At(i, j).(color.RGBA) got := c.G want := uint8(0) if abs(int(c.G)-int(want)) > 1 { t.Errorf("dst At(%d, %d).G: got %#v, want: %#v", i, j, got, want) } } } } func TestImageOutside(t *testing.T) { src, _ := NewImage(5, 10, FilterNearest) // internal texture size is 8x16. dst, _ := NewImage(4, 4, FilterNearest) src.Fill(color.RGBA{0xff, 0, 0, 0xff}) cases := []struct { X, Y, Width, Height int }{ {-4, -4, 4, 4}, {5, 0, 4, 4}, {0, 10, 4, 4}, {5, 10, 4, 4}, {8, 0, 4, 4}, {0, 16, 4, 4}, {8, 16, 4, 4}, {8, -4, 4, 4}, {-4, 16, 4, 4}, {5, 10, 0, 0}, {5, 10, -2, -2}, // non-well-formed rectangle } for _, c := range cases { dst.Clear() op := &DrawImageOptions{} op.GeoM.Translate(0, 0) dst.DrawImage(src.SubImage(image.Rectangle{ Min: image.Pt(c.X, c.Y), Max: image.Pt(c.X+c.Width, c.Y+c.Height), }).(*Image), op) for j := 0; j < 4; j++ { for i := 0; i < 4; i++ { got := dst.At(i, j).(color.RGBA) want := color.RGBA{0, 0, 0, 0} if got != want { t.Errorf("src(x: %d, y: %d, w: %d, h: %d), dst At(%d, %d): got %#v, want: %#v", c.X, c.Y, c.Width, c.Height, i, j, got, want) } } } } } func TestImageOutsideUpperLeft(t *testing.T) { src, _ := NewImage(4, 4, FilterNearest) dst1, _ := NewImage(16, 16, FilterNearest) dst2, _ := NewImage(16, 16, FilterNearest) src.Fill(color.RGBA{0xff, 0, 0, 0xff}) op := &DrawImageOptions{} op.GeoM.Rotate(math.Pi / 4) dst1.DrawImage(src.SubImage(image.Rect(-4, -4, 8, 8)).(*Image), op) op = &DrawImageOptions{} // The outside part of the source rect is just ignored. // This behavior was changed as of 1.9.0-alpha. // op.GeoM.Translate(4, 4) op.GeoM.Rotate(math.Pi / 4) dst2.DrawImage(src, op) for j := 0; j < 16; j++ { for i := 0; i < 16; i++ { got := dst1.At(i, j).(color.RGBA) want := dst2.At(i, j).(color.RGBA) if got != want { t.Errorf("got: dst1.At(%d, %d): %#v, want: dst2.At(%d, %d): %#v", i, j, got, i, j, want) } } } } func TestImageSize(t *testing.T) { const ( w = 17 h = 31 ) img, _ := NewImage(w, h, FilterDefault) gotW, gotH := img.Size() if gotW != w { t.Errorf("got: %d, want: %d", gotW, w) } if gotH != h { t.Errorf("got: %d, want: %d", gotH, h) } } func TestImageSize1(t *testing.T) { src, _ := NewImage(1, 1, FilterNearest) dst, _ := NewImage(1, 1, FilterNearest) src.Fill(color.White) dst.DrawImage(src, nil) got := src.At(0, 0).(color.RGBA) want := color.RGBA{0xff, 0xff, 0xff, 0xff} if !sameColors(got, want, 1) { t.Errorf("got: %#v, want: %#v", got, want) } } func TestImageSize4096(t *testing.T) { src, _ := NewImage(4096, 4096, FilterNearest) dst, _ := NewImage(4096, 4096, FilterNearest) pix := make([]byte, 4096*4096*4) for i := 0; i < 4096; i++ { j := 4095 idx := 4 * (i + j*4096) pix[idx] = uint8(i + j) pix[idx+1] = uint8((i + j) >> 8) pix[idx+2] = uint8((i + j) >> 16) pix[idx+3] = 0xff } for j := 0; j < 4096; j++ { i := 4095 idx := 4 * (i + j*4096) pix[idx] = uint8(i + j) pix[idx+1] = uint8((i + j) >> 8) pix[idx+2] = uint8((i + j) >> 16) pix[idx+3] = 0xff } src.ReplacePixels(pix) dst.DrawImage(src, nil) for i := 4095; i < 4096; i++ { j := 4095 got := dst.At(i, j).(color.RGBA) want := color.RGBA{uint8(i + j), uint8((i + j) >> 8), uint8((i + j) >> 16), 0xff} if got != want { t.Errorf("At(%d, %d): got: %#v, want: %#v", i, j, got, want) } } for j := 4095; j < 4096; j++ { i := 4095 got := dst.At(i, j).(color.RGBA) want := color.RGBA{uint8(i + j), uint8((i + j) >> 8), uint8((i + j) >> 16), 0xff} if got != want { t.Errorf("At(%d, %d): got: %#v, want: %#v", i, j, got, want) } } } func TestImageCopy(t *testing.T) { defer func() { if r := recover(); r == nil { t.Errorf("copying image and using it must panic") } }() img0, _ := NewImage(256, 256, FilterDefault) img1 := *img0 img1.Fill(color.Transparent) } func TestImageStretch(t *testing.T) { img0, _ := NewImage(16, 17, FilterDefault) pix := make([]byte, 4*16*17) for i := 0; i < 16*16; i++ { pix[4*i] = 0xff pix[4*i+3] = 0xff } for i := 0; i < 16; i++ { pix[4*(16*16+i)+1] = 0xff pix[4*(16*16+i)+3] = 0xff } img0.ReplacePixels(pix) // TODO: 4096 doesn't pass on MacBook Pro (#611). const h = 4000 img1, _ := NewImage(16, h, FilterDefault) for i := 1; i < h; i++ { img1.Clear() op := &DrawImageOptions{} op.GeoM.Scale(1, float64(i)/16) img1.DrawImage(img0.SubImage(image.Rect(0, 0, 16, 16)).(*Image), op) for j := -1; j <= 1; j++ { got := img1.At(0, i+j).(color.RGBA) want := color.RGBA{} if j < 0 { want = color.RGBA{0xff, 0, 0, 0xff} } if got != want { t.Errorf("At(%d, %d) (i=%d): got: %#v, want: %#v", 0, i+j, i, got, want) } } } } func TestImageSprites(t *testing.T) { const ( width = 512 height = 512 ) src, _ := NewImage(4, 4, FilterNearest) src.Fill(color.RGBA{0xff, 0xff, 0xff, 0xff}) dst, _ := NewImage(width, height, FilterNearest) for j := 0; j < height/4; j++ { for i := 0; i < width/4; i++ { op := &DrawImageOptions{} op.GeoM.Translate(float64(i*4), float64(j*4)) dst.DrawImage(src, op) } } for j := 0; j < height/4; j++ { for i := 0; i < width/4; i++ { got := dst.At(i*4, j*4).(color.RGBA) want := color.RGBA{0xff, 0xff, 0xff, 0xff} if !sameColors(got, want, 1) { t.Errorf("dst.At(%d, %d): got %#v, want: %#v", i*4, j*4, got, want) } } } } func TestImageMipmap(t *testing.T) { src, _, err := openEbitenImage() if err != nil { t.Fatal(err) return } w, h := src.Size() l1, _ := NewImage(w/2, h/2, FilterDefault) op := &DrawImageOptions{} op.GeoM.Scale(1/2.0, 1/2.0) op.Filter = FilterLinear l1.DrawImage(src, op) l1w, l1h := l1.Size() l2, _ := NewImage(l1w/2, l1h/2, FilterDefault) op = &DrawImageOptions{} op.GeoM.Scale(1/2.0, 1/2.0) op.Filter = FilterLinear l2.DrawImage(l1, op) gotDst, _ := NewImage(w, h, FilterDefault) op = &DrawImageOptions{} op.GeoM.Scale(1/5.0, 1/5.0) op.Filter = FilterLinear gotDst.DrawImage(src, op) wantDst, _ := NewImage(w, h, FilterDefault) op = &DrawImageOptions{} op.GeoM.Scale(4.0/5.0, 4.0/5.0) op.Filter = FilterLinear wantDst.DrawImage(l2, op) for j := 0; j < h; j++ { for i := 0; i < h; i++ { got := gotDst.At(i, j).(color.RGBA) want := wantDst.At(i, j).(color.RGBA) if !sameColors(got, want, 1) { t.Errorf("At(%d, %d): got: %#v, want: %#v", i, j, got, want) } } } } // Issue #710 func TestImageMipmapColor(t *testing.T) { img0, _ := NewImage(256, 256, FilterDefault) img1, _ := NewImage(128, 128, FilterDefault) img1.Fill(color.White) for i := 0; i < 8; i++ { img0.Clear() s := 1 - float64(i)/8 op := &DrawImageOptions{} op.Filter = FilterLinear op.GeoM.Scale(s, s) op.ColorM.Scale(1, 1, 0, 1) img0.DrawImage(img1, op) op.GeoM.Translate(128, 0) op.ColorM.Reset() op.ColorM.Scale(0, 1, 1, 1) img0.DrawImage(img1, op) want := color.RGBA{0, 0xff, 0xff, 0xff} got := img0.At(128, 0) if got != want { t.Errorf("want: %#v, got: %#v", want, got) } } } // Issue #725 func TestImageMiamapAndDrawTriangle(t *testing.T) { img0, _ := NewImage(32, 32, FilterDefault) img1, _ := NewImage(128, 128, FilterDefault) img2, _ := NewImage(128, 128, FilterDefault) // Fill img1 red and create img1's mipmap img1.Fill(color.RGBA{0xff, 0, 0, 0xff}) op := &DrawImageOptions{} op.GeoM.Scale(0.25, 0.25) op.Filter = FilterLinear img0.DrawImage(img1, op) // Call DrawTriangle on img1 and fill it with green img2.Fill(color.RGBA{0, 0xff, 0, 0xff}) vs := []Vertex{ { DstX: 0, DstY: 0, SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, { DstX: 128, DstY: 0, SrcX: 128, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, { DstX: 0, DstY: 128, SrcX: 0, SrcY: 128, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, { DstX: 128, DstY: 128, SrcX: 128, SrcY: 128, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, } img1.DrawTriangles(vs, []uint16{0, 1, 2, 1, 2, 3}, img2, nil) // Draw img1 (green) again. Confirm mipmap is correctly updated. img0.Clear() op = &DrawImageOptions{} op.GeoM.Scale(0.25, 0.25) op.Filter = FilterLinear img0.DrawImage(img1, op) w, h := img0.Size() for j := 0; j < h; j++ { for i := 0; i < w; i++ { c := img0.At(i, j).(color.RGBA) if c.R != 0 { t.Errorf("img0.At(%d, %d): red want %d got %d", i, j, 0, c.R) } } } } func TestImageSubImageAt(t *testing.T) { img, _ := NewImage(16, 16, FilterDefault) img.Fill(color.RGBA{0xff, 0, 0, 0xff}) got := img.SubImage(image.Rect(1, 1, 16, 16)).At(0, 0).(color.RGBA) want := color.RGBA{} if got != want { t.Errorf("got: %v, want: %v", got, want) } got = img.SubImage(image.Rect(1, 1, 16, 16)).At(1, 1).(color.RGBA) want = color.RGBA{0xff, 0, 0, 0xff} if got != want { t.Errorf("got: %v, want: %v", got, want) } } func TestImageSubImageSize(t *testing.T) { img, _ := NewImage(16, 16, FilterDefault) img.Fill(color.RGBA{0xff, 0, 0, 0xff}) got, _ := img.SubImage(image.Rect(1, 1, 16, 16)).(*Image).Size() want := 15 if got != want { t.Errorf("got: %v, want: %v", got, want) } } func TestImageDrawImmediately(t *testing.T) { const w, h = 16, 16 img0, _ := NewImage(w, h, FilterDefault) img1, _ := NewImage(w, h, FilterDefault) // Do not manipulate img0 here. img0.Fill(color.RGBA{0xff, 0, 0, 0xff}) for j := 0; j < h; j++ { for i := 0; i < w; i++ { got := img0.At(i, j).(color.RGBA) want := color.RGBA{0xff, 0, 0, 0xff} if got != want { t.Errorf("img0.At(%d, %d): got %v, want: %v", i, j, got, want) } } } img0.DrawImage(img1, nil) for j := 0; j < h; j++ { for i := 0; i < w; i++ { got := img0.At(i, j).(color.RGBA) want := color.RGBA{0xff, 0, 0, 0xff} if got != want { t.Errorf("img0.At(%d, %d): got %v, want: %v", i, j, got, want) } } } } // Issue #669, #759 func TestImageLinearFilterGlitch(t *testing.T) { const w, h = 200, 12 const scale = 1.2 src, _ := NewImage(w, h, FilterDefault) dst, _ := NewImage(int(math.Floor(w*scale)), h, FilterDefault) pix := make([]byte, 4*w*h) for j := 0; j < h; j++ { for i := 0; i < w; i++ { idx := i + w*j if j < 3 { pix[4*idx] = 0xff pix[4*idx+1] = 0xff pix[4*idx+2] = 0xff pix[4*idx+3] = 0xff } else { pix[4*idx] = 0 pix[4*idx+1] = 0 pix[4*idx+2] = 0 pix[4*idx+3] = 0xff } } } src.ReplacePixels(pix) op := &DrawImageOptions{} op.GeoM.Scale(scale, 1) op.Filter = FilterLinear dst.DrawImage(src, op) for j := 1; j < h-1; j++ { offset := int(math.Ceil(scale)) for i := offset; i < int(math.Floor(w*scale))-offset; i++ { got := dst.At(i, j).(color.RGBA) var want color.RGBA if j < 3 { want = color.RGBA{0xff, 0xff, 0xff, 0xff} } else { want = color.RGBA{0, 0, 0, 0xff} } if got != want { t.Errorf("src.At(%d, %d): got: %v, want: %v", i, j, got, want) } } } } func TestImageAddressRepeat(t *testing.T) { const w, h = 16, 16 src, _ := NewImage(w, h, FilterDefault) dst, _ := NewImage(w, h, FilterDefault) pix := make([]byte, 4*w*h) for j := 0; j < h; j++ { for i := 0; i < w; i++ { idx := 4 * (i + j*w) if 4 <= i && i < 8 && 4 <= j && j < 8 { pix[idx] = byte(i-4) * 0x10 pix[idx+1] = byte(j-4) * 0x10 pix[idx+2] = 0 pix[idx+3] = 0xff } else { pix[idx] = 0 pix[idx+1] = 0 pix[idx+2] = 0xff pix[idx+3] = 0xff } } } src.ReplacePixels(pix) vs := []Vertex{ { DstX: 0, DstY: 0, SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, { DstX: w, DstY: 0, SrcX: w, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, { DstX: 0, DstY: h, SrcX: 0, SrcY: h, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, { DstX: w, DstY: h, SrcX: w, SrcY: h, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }, } is := []uint16{0, 1, 2, 1, 2, 3} op := &DrawTrianglesOptions{} op.Address = AddressRepeat dst.DrawTriangles(vs, is, src.SubImage(image.Rect(4, 4, 8, 8)).(*Image), op) for j := 0; j < h; j++ { for i := 0; i < w; i++ { got := dst.At(i, j).(color.RGBA) want := color.RGBA{byte(i%4) * 0x10, byte(j%4) * 0x10, 0, 0xff} if !sameColors(got, want, 1) { t.Errorf("dst.At(%d, %d): got %v, want: %v", i, j, got, want) } } } } func TestImageReplacePixelsAfterClear(t *testing.T) { const w, h = 256, 256 img, _ := NewImage(w, h, FilterDefault) img.ReplacePixels(make([]byte, 4*w*h)) // Clear used to call DrawImage to clear the image, which was the cause of crash. It is because after // DrawImage is called, ReplacePixels for a region is forbidden. // // Now ReplacePixels was always called at Clear instead. img.Clear() img.ReplacePixels(make([]byte, 4*w*h)) // The test passes if this doesn't crash. } func TestImageSet(t *testing.T) { type Pt struct { X, Y int } const w, h = 16, 16 img, _ := NewImage(w, h, FilterDefault) colors := map[Pt]color.RGBA{ {1, 2}: {3, 4, 5, 6}, {7, 8}: {9, 10, 11, 12}, {13, 14}: {15, 16, 17, 18}, } for p, c := range colors { img.Set(p.X, p.Y, c) } for j := 0; j < h; j++ { for i := 0; i < w; i++ { got := img.At(i, j).(color.RGBA) var want color.RGBA if c, ok := colors[Pt{i, j}]; ok { want = c } if got != want { t.Errorf("img.At(%d, %d): got: %v, want: %v", i, j, got, want) } } } } func TestImageSetAndDraw(t *testing.T) { type Pt struct { X, Y int } const w, h = 16, 16 src, _ := NewImage(w, h, FilterDefault) dst, _ := NewImage(w, h, FilterDefault) colors := map[Pt]color.RGBA{ {1, 2}: {3, 4, 5, 6}, {7, 8}: {9, 10, 11, 12}, {13, 14}: {15, 16, 17, 18}, } for p, c := range colors { src.Set(p.X, p.Y, c) dst.Set(p.X+1, p.Y+1, c) } dst.DrawImage(src, nil) for j := 0; j < h; j++ { for i := 0; i < w; i++ { got := dst.At(i, j).(color.RGBA) var want color.RGBA if c, ok := colors[Pt{i, j}]; ok { want = c } if c, ok := colors[Pt{i - 1, j - 1}]; ok { want = c } if got != want { t.Errorf("img.At(%d, %d): got: %v, want: %v", i, j, got, want) } } } src.Clear() dst.Clear() for p, c := range colors { src.Set(p.X, p.Y, c) dst.Set(p.X+1, p.Y+1, c) } op := &DrawImageOptions{} op.GeoM.Translate(2, 2) dst.DrawImage(src.SubImage(image.Rect(2, 2, w-2, h-2)).(*Image), op) for j := 0; j < h; j++ { for i := 0; i < w; i++ { got := dst.At(i, j).(color.RGBA) var want color.RGBA if 2 <= i && 2 <= j && i < w-2 && j < h-2 { if c, ok := colors[Pt{i, j}]; ok { want = c } } if c, ok := colors[Pt{i - 1, j - 1}]; ok { want = c } if got != want { t.Errorf("img.At(%d, %d): got: %v, want: %v", i, j, got, want) } } } } func TestImageAlphaOnBlack(t *testing.T) { const w, h = 16, 16 src0, _ := NewImage(w, h, FilterDefault) src1, _ := NewImage(w, h, FilterDefault) dst0, _ := NewImage(w, h, FilterDefault) dst1, _ := NewImage(w, h, FilterDefault) pix0 := make([]byte, 4*w*h) for j := 0; j < h; j++ { for i := 0; i < w; i++ { if (i/3)%2 == (j/3)%2 { pix0[4*(i+j*w)] = 0xff pix0[4*(i+j*w)+1] = 0xff pix0[4*(i+j*w)+2] = 0xff pix0[4*(i+j*w)+3] = 0xff } } } src0.ReplacePixels(pix0) pix1 := make([]byte, 4*w*h) for j := 0; j < h; j++ { for i := 0; i < w; i++ { if (i/3)%2 == (j/3)%2 { pix1[4*(i+j*w)] = 0xff pix1[4*(i+j*w)+1] = 0xff pix1[4*(i+j*w)+2] = 0xff pix1[4*(i+j*w)+3] = 0xff } else { pix1[4*(i+j*w)] = 0 pix1[4*(i+j*w)+1] = 0 pix1[4*(i+j*w)+2] = 0 pix1[4*(i+j*w)+3] = 0xff } } } src1.ReplacePixels(pix1) dst0.Fill(color.Black) dst1.Fill(color.Black) op := &DrawImageOptions{} op.GeoM.Scale(0.5, 0.5) op.Filter = FilterLinear dst0.DrawImage(src0, op) dst1.DrawImage(src1, op) gray := false for j := 0; j < h; j++ { for i := 0; i < w; i++ { got := dst0.At(i, j) want := dst1.At(i, j) if got != want { t.Errorf("At(%d, %d): got: %v, want: %v", i, j, got, want) } if r := got.(color.RGBA).R; 0 < r && r < 255 { gray = true } } } if !gray { t.Errorf("gray must be included in the results but not") } }