// Copyright 2017 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // +build !js package mp3 import ( "fmt" "io" ) var mpeg1_scalefac_sizes = [16][2]int{ {0, 0}, {0, 1}, {0, 2}, {0, 3}, {3, 0}, {1, 1}, {1, 2}, {1, 3}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3}, {4, 2}, {4, 3}, } func (f *frame) readMainL3() error { nch := f.numberOfChannels() // Calculate header audio data size framesize := (144* g_mpeg1_bitrates[f.header.layer][f.header.bitrate_index])/ g_sampling_frequency[f.header.sampling_frequency] + f.header.padding_bit if framesize > 2000 { return fmt.Errorf("mp3: framesize = %d", framesize) } // Sideinfo is 17 bytes for one channel and 32 bytes for two sideinfo_size := 32 if nch == 1 { sideinfo_size = 17 } // Main data size is the rest of the frame,including ancillary data main_data_size := framesize - sideinfo_size - 4 // sync+header // CRC is 2 bytes if f.header.protection_bit == 0 { main_data_size -= 2 } // Assemble main data buffer with data from this frame and the previous // two frames. main_data_begin indicates how many bytes from previous // frames that should be used. This buffer is later accessed by the // getMainBits function in the same way as the side info is. m, err := getMainData(f.prev, main_data_size, f.sideInfo.main_data_begin) if err != nil { // This could be due to not enough data in reservoir return err } f.mainDataBytes = m for gr := 0; gr < 2; gr++ { for ch := 0; ch < nch; ch++ { part_2_start := m.getMainPos() // Number of bits in the bitstream for the bands slen1 := mpeg1_scalefac_sizes[f.sideInfo.scalefac_compress[gr][ch]][0] slen2 := mpeg1_scalefac_sizes[f.sideInfo.scalefac_compress[gr][ch]][1] if (f.sideInfo.win_switch_flag[gr][ch] != 0) && (f.sideInfo.block_type[gr][ch] == 2) { if f.sideInfo.mixed_block_flag[gr][ch] != 0 { for sfb := 0; sfb < 8; sfb++ { f.mainData.scalefac_l[gr][ch][sfb] = m.getMainBits(slen1) } for sfb := 3; sfb < 12; sfb++ { //slen1 for band 3-5,slen2 for 6-11 nbits := slen2 if sfb < 6 { nbits = slen1 } for win := 0; win < 3; win++ { f.mainData.scalefac_s[gr][ch][sfb][win] = m.getMainBits(nbits) } } } else { for sfb := 0; sfb < 12; sfb++ { //slen1 for band 3-5,slen2 for 6-11 nbits := slen2 if sfb < 6 { nbits = slen1 } for win := 0; win < 3; win++ { f.mainData.scalefac_s[gr][ch][sfb][win] = m.getMainBits(nbits) } } } } else { // block_type == 0 if winswitch == 0 // Scale factor bands 0-5 if (f.sideInfo.scfsi[ch][0] == 0) || (gr == 0) { for sfb := 0; sfb < 6; sfb++ { f.mainData.scalefac_l[gr][ch][sfb] = m.getMainBits(slen1) } } else if (f.sideInfo.scfsi[ch][0] == 1) && (gr == 1) { // Copy scalefactors from granule 0 to granule 1 for sfb := 0; sfb < 6; sfb++ { f.mainData.scalefac_l[1][ch][sfb] = f.mainData.scalefac_l[0][ch][sfb] } } // Scale factor bands 6-10 if (f.sideInfo.scfsi[ch][1] == 0) || (gr == 0) { for sfb := 6; sfb < 11; sfb++ { f.mainData.scalefac_l[gr][ch][sfb] = m.getMainBits(slen1) } } else if (f.sideInfo.scfsi[ch][1] == 1) && (gr == 1) { // Copy scalefactors from granule 0 to granule 1 for sfb := 6; sfb < 11; sfb++ { f.mainData.scalefac_l[1][ch][sfb] = f.mainData.scalefac_l[0][ch][sfb] } } // Scale factor bands 11-15 if (f.sideInfo.scfsi[ch][2] == 0) || (gr == 0) { for sfb := 11; sfb < 16; sfb++ { f.mainData.scalefac_l[gr][ch][sfb] = m.getMainBits(slen2) } } else if (f.sideInfo.scfsi[ch][2] == 1) && (gr == 1) { // Copy scalefactors from granule 0 to granule 1 for sfb := 11; sfb < 16; sfb++ { f.mainData.scalefac_l[1][ch][sfb] = f.mainData.scalefac_l[0][ch][sfb] } } // Scale factor bands 16-20 if (f.sideInfo.scfsi[ch][3] == 0) || (gr == 0) { for sfb := 16; sfb < 21; sfb++ { f.mainData.scalefac_l[gr][ch][sfb] = m.getMainBits(slen2) } } else if (f.sideInfo.scfsi[ch][3] == 1) && (gr == 1) { // Copy scalefactors from granule 0 to granule 1 for sfb := 16; sfb < 21; sfb++ { f.mainData.scalefac_l[1][ch][sfb] = f.mainData.scalefac_l[0][ch][sfb] } } } // Read Huffman coded data. Skip stuffing bits. if err := f.readHuffman(part_2_start, gr, ch); err != nil { return err } } } // The ancillary data is stored here,but we ignore it. return nil } type mainDataBytes struct { // Large static data vec []int // Index into the current byte(0-7) idx int pos int } func getMainData(prevFrame *frame, size int, offset int) (*mainDataBytes, error) { if size > 1500 { return nil, fmt.Errorf("mp3: size = %d", size) } // Check that there's data available from previous frames if needed if prevFrame != nil && offset > len(prevFrame.mainDataBytes.vec) { // No,there is not, so we skip decoding this frame, but we have to // read the main_data bits from the bitstream in case they are needed // for decoding the next frame. buf := make([]int, size) n := 0 var err error for n < size && err == nil { nn, err2 := getBytes(buf) n += nn err = err2 } if n < size { if err == io.EOF { return nil, fmt.Errorf("mp3: unexpected EOF at getMainData") } return nil, err } m := &mainDataBytes{} if prevFrame != nil { m.vec = append(prevFrame.mainDataBytes.vec, buf...) } // TODO: Define a special error and enable to continue the next frame. return m, fmt.Errorf("mp3: frame can't be decoded") } // Copy data from previous frames vec := []int{} if prevFrame != nil { v := prevFrame.mainDataBytes.vec vec = v[len(v)-offset:] } // Read the main_data from file buf := make([]int, size) n := 0 var err error for n < size && err == nil { nn, err2 := getBytes(buf) n += nn err = err2 } if n < size { if err == io.EOF { return nil, fmt.Errorf("mp3: unexpected EOF at getMainData") } return nil, err } m := &mainDataBytes{ vec: append(vec, buf...), } return m, nil } func (m *mainDataBytes) getMainBit() int { tmp := uint(m.vec[m.pos]) >> (7 - uint(m.idx)) tmp &= 0x01 m.pos += (m.idx + 1) >> 3 m.idx = (m.idx + 1) & 0x07 return int(tmp) } func (m *mainDataBytes) getMainBits(num int) int { if num == 0 { return 0 } // Form a word of the next four bytes b := make([]int, 4) copy(b, m.vec[m.pos:]) tmp := (uint32(b[0]) << 24) | (uint32(b[1]) << 16) | (uint32(b[2]) << 8) | (uint32(b[3]) << 0) // Remove bits already used tmp = tmp << uint(m.idx) // Remove bits after the desired bits tmp = tmp >> (32 - uint(num)) // Update pointers m.pos += (m.idx + num) >> 3 m.idx = (m.idx + num) & 0x07 return int(tmp) } func (m *mainDataBytes) getMainPos() int { pos := m.pos pos *= 8 // Multiply by 8 to get number of bits pos += m.idx return pos } func (m *mainDataBytes) setMainPos(bit_pos int) { m.pos = bit_pos >> 3 m.idx = bit_pos & 0x7 }