// Copyright 2014 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ebiten import ( "fmt" "math" ) // GeoMDim is a dimension of a GeoM. const GeoMDim = 3 // A GeoM represents a matrix to transform geometry when rendering an image. // // The initial value is identity. type GeoM struct { a_1 float32 // The actual 'a' value minus 1 b float32 c float32 d_1 float32 // The actual 'd' value minus 1 tx float32 ty float32 } // String returns a string representation of GeoM. func (g *GeoM) String() string { return fmt.Sprintf("[[%f, %f, %f], [%f, %f, %f]]", g.a_1+1, g.b, g.tx, g.c, g.d_1+1, g.ty) } // Reset resets the GeoM as identity. func (g *GeoM) Reset() { g.a_1 = 0 g.b = 0 g.c = 0 g.d_1 = 0 g.tx = 0 g.ty = 0 } // Apply pre-multiplies a vector (x, y, 1) by the matrix. // In other words, Apply calculates GeoM * (x, y, 1)^T. // The return value is x and y values of the result vector. func (g *GeoM) Apply(x, y float64) (float64, float64) { x2, y2 := g.apply32(float32(x), float32(y)) return float64(x2), float64(y2) } func (g *GeoM) apply32(x, y float32) (x2, y2 float32) { return (g.a_1+1)*x + g.b*y + g.tx, g.c*x + (g.d_1+1)*y + g.ty } // Element returns a value of a matrix at (i, j). func (g *GeoM) Element(i, j int) float64 { switch { case i == 0 && j == 0: return float64(g.a_1) + 1 case i == 0 && j == 1: return float64(g.b) case i == 0 && j == 2: return float64(g.tx) case i == 1 && j == 0: return float64(g.c) case i == 1 && j == 1: return float64(g.d_1) + 1 case i == 1 && j == 2: return float64(g.ty) default: panic("ebiten: i or j is out of index") } } // Concat multiplies a geometry matrix with the other geometry matrix. // This is same as muptiplying the matrix other and the matrix g in this order. func (g *GeoM) Concat(other GeoM) { a := (other.a_1+1)*(g.a_1+1) + other.b*g.c b := (other.a_1+1)*g.b + other.b*(g.d_1+1) tx := (other.a_1+1)*g.tx + other.b*g.ty + other.tx c := other.c*(g.a_1+1) + (other.d_1+1)*g.c d := other.c*g.b + (other.d_1+1)*(g.d_1+1) ty := other.c*g.tx + (other.d_1+1)*g.ty + other.ty g.a_1 = a - 1 g.b = b g.c = c g.d_1 = d - 1 g.tx = tx g.ty = ty } // Add is deprecated as of 1.5.0-alpha. // Note that this doesn't make sense as an operation for affine matrices. func (g *GeoM) Add(other GeoM) { g.a_1 += other.a_1 g.b += other.b g.c += other.c g.d_1 += other.d_1 g.tx += other.tx g.ty += other.ty } // Scale scales the matrix by (x, y). func (g *GeoM) Scale(x, y float64) { a := (float64(g.a_1) + 1) * x b := float64(g.b) * x tx := float64(g.tx) * x c := float64(g.c) * y d := (float64(g.d_1) + 1) * y ty := float64(g.ty) * y g.a_1 = float32(a) - 1 g.b = float32(b) g.c = float32(c) g.d_1 = float32(d) - 1 g.tx = float32(tx) g.ty = float32(ty) } // Translate translates the matrix by (tx, ty). func (g *GeoM) Translate(tx, ty float64) { g.tx += float32(tx) g.ty += float32(ty) } // Rotate rotates the matrix by theta. // The unit is radian. func (g *GeoM) Rotate(theta float64) { sin64, cos64 := math.Sincos(theta) sin, cos := float32(sin64), float32(cos64) a := cos*(g.a_1+1) - sin*g.c b := cos*g.b - sin*(g.d_1+1) tx := cos*g.tx - sin*g.ty c := sin*(g.a_1+1) + cos*g.c d := sin*g.b + cos*(g.d_1+1) ty := sin*g.tx + cos*g.ty g.a_1 = a - 1 g.b = b g.c = c g.d_1 = d - 1 g.tx = tx g.ty = ty } func (g *GeoM) det() float32 { return (g.a_1+1)*(g.d_1+1) - g.b*g.c } // IsInvertible returns a boolean value indicating // whether the matrix g is invertible or not. func (g *GeoM) IsInvertible() bool { return g.det() != 0 } // Invert inverts the matrix. // If g is not invertible, Invert panics. func (g *GeoM) Invert() { det := g.det() if det == 0 { panic("ebiten: g is not invertible") } a := (g.d_1 + 1) / det b := -g.b / det c := -g.c / det d := (g.a_1 + 1) / det tx := (-(g.d_1+1)*g.tx + g.b*g.ty) / det ty := (g.c*g.tx + -(g.a_1+1)*g.ty) / det g.a_1 = a - 1 g.b = b g.c = c g.d_1 = d - 1 g.tx = tx g.ty = ty } // SetElement sets an element at (i, j). func (g *GeoM) SetElement(i, j int, element float64) { e := float32(element) switch { case i == 0 && j == 0: g.a_1 = e - 1 case i == 0 && j == 1: g.b = e case i == 0 && j == 2: g.tx = e case i == 1 && j == 0: g.c = e case i == 1 && j == 1: g.d_1 = e - 1 case i == 1 && j == 2: g.ty = e default: panic("ebiten: i or j is out of index") } } // ScaleGeo is deprecated as of 1.2.0-alpha. Use Scale instead. func ScaleGeo(x, y float64) GeoM { g := GeoM{} g.Scale(x, y) return g } // TranslateGeo is deprecated as of 1.2.0-alpha. Use Translate instead. func TranslateGeo(tx, ty float64) GeoM { g := GeoM{} g.Translate(tx, ty) return g } // RotateGeo is deprecated as of 1.2.0-alpha. Use Rotate instead. func RotateGeo(theta float64) GeoM { g := GeoM{} g.Rotate(theta) return g }