// Copyright 2017 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ebiten import ( "github.com/hajimehoshi/ebiten/internal/affine" "github.com/hajimehoshi/ebiten/internal/restorable" ) var ( quadFloat32Num = restorable.QuadVertexSizeInBytes() / 4 theVerticesBackend = &verticesBackend{} ) type verticesBackend struct { backend []float32 head int } func (v *verticesBackend) get() []float32 { const num = 256 if v.backend == nil { v.backend = make([]float32, quadFloat32Num*num) } s := v.backend[v.head : v.head+quadFloat32Num] v.head += quadFloat32Num if v.head+quadFloat32Num > len(v.backend) { v.backend = nil v.head = 0 } return s } func vertices(sx0, sy0, sx1, sy1 int, width, height int, geo *affine.GeoM) []float32 { if sx0 == sx1 || sy0 == sy1 { return nil } // TODO: This function should be in graphics package? vs := theVerticesBackend.get() a, b, c, d, tx, ty := geo.Elements() g0 := float32(a) g1 := float32(b) g2 := float32(c) g3 := float32(d) g4 := float32(tx) g5 := float32(ty) w := 1 h := 1 for w < width { w *= 2 } for h < height { h *= 2 } wf := float32(w) hf := float32(h) x0, y0, x1, y1 := float32(0), float32(0), float32(sx1-sx0), float32(sy1-sy0) u0, v0, u1, v1 := float32(sx0)/wf, float32(sy0)/hf, float32(sx1)/wf, float32(sy1)/hf // Vertex coordinates vs[0] = x0 vs[1] = y0 // Texture coordinates: first 2 values indicates the actual coodinate, and // the second indicates diagonally opposite coodinates. // The second is needed to calculate source rectangle size in shader programs. vs[2] = u0 vs[3] = v0 vs[4] = u1 vs[5] = v1 // Geometry matrix vs[6] = g0 vs[7] = g1 vs[8] = g2 vs[9] = g3 vs[10] = g4 vs[11] = g5 vs[12] = x1 vs[13] = y0 vs[14] = u1 vs[15] = v0 vs[16] = u0 vs[17] = v1 vs[18] = g0 vs[19] = g1 vs[20] = g2 vs[21] = g3 vs[22] = g4 vs[23] = g5 vs[24] = x0 vs[25] = y1 vs[26] = u0 vs[27] = v1 vs[28] = u1 vs[29] = v0 vs[30] = g0 vs[31] = g1 vs[32] = g2 vs[33] = g3 vs[34] = g4 vs[35] = g5 vs[36] = x1 vs[37] = y1 vs[38] = u1 vs[39] = v1 vs[40] = u0 vs[41] = v0 vs[42] = g0 vs[43] = g1 vs[44] = g2 vs[45] = g3 vs[46] = g4 vs[47] = g5 return vs }