// Copyright 2022 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ui import ( "fmt" "github.com/hajimehoshi/ebiten/v2/internal/atlas" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" "github.com/hajimehoshi/ebiten/v2/internal/mipmap" ) // panicOnErrorOnReadingPixels indicates whether reading pixels panics on an error or not. // This value is set only on testing. var panicOnErrorOnReadingPixels bool func SetPanicOnErrorOnReadingPixelsForTesting(value bool) { panicOnErrorOnReadingPixels = value } const bigOffscreenScale = 2 type Image struct { mipmap *mipmap.Mipmap width int height int imageType atlas.ImageType dotsBuffer map[[2]int][4]byte // bigOffscreenBuffer is a double-sized offscreen for anti-alias rendering. bigOffscreenBuffer *Image bigOffscreenBufferBlend graphicsdriver.Blend bigOffscreenBufferDirty bool } func NewImage(width, height int, imageType atlas.ImageType) *Image { return &Image{ mipmap: mipmap.New(width, height, imageType), width: width, height: height, imageType: imageType, } } func (i *Image) MarkDisposed() { if i.mipmap == nil { return } if i.bigOffscreenBuffer != nil { i.bigOffscreenBuffer.MarkDisposed() i.bigOffscreenBuffer = nil i.bigOffscreenBufferDirty = false } i.mipmap.MarkDisposed() i.mipmap = nil i.dotsBuffer = nil } func (i *Image) DrawTriangles(srcs [graphics.ShaderImageCount]*Image, vertices []float32, indices []uint16, blend graphicsdriver.Blend, dstRegion, srcRegion graphicsdriver.Region, subimageOffsets [graphics.ShaderImageCount - 1][2]float32, shader *Shader, uniforms [][]float32, evenOdd bool, canSkipMipmap bool, antialias bool) { if antialias { // Flush the other buffer to make the buffers exclusive. i.flushDotsBufferIfNeeded() if i.bigOffscreenBufferBlend != blend { i.flushBigOffscreenBufferIfNeeded() } if i.bigOffscreenBuffer == nil { var imageType atlas.ImageType switch i.imageType { case atlas.ImageTypeRegular, atlas.ImageTypeUnmanaged: imageType = atlas.ImageTypeUnmanaged case atlas.ImageTypeScreen, atlas.ImageTypeVolatile: imageType = atlas.ImageTypeVolatile default: panic(fmt.Sprintf("ui: unexpected image type: %d", imageType)) } i.bigOffscreenBuffer = NewImage(i.width*bigOffscreenScale, i.height*bigOffscreenScale, imageType) } i.bigOffscreenBufferBlend = blend // Copy the current rendering result to get the correct blending result. if blend != graphicsdriver.BlendSourceOver && !i.bigOffscreenBufferDirty { srcs := [graphics.ShaderImageCount]*Image{i} vs := graphics.QuadVertices( 0, 0, float32(i.width), float32(i.height), bigOffscreenScale, 0, 0, bigOffscreenScale, 0, 0, 1, 1, 1, 1) is := graphics.QuadIndices() dstRegion := graphicsdriver.Region{ X: 0, Y: 0, Width: float32(i.width * bigOffscreenScale), Height: float32(i.height * bigOffscreenScale), } i.bigOffscreenBuffer.DrawTriangles(srcs, vs, is, graphicsdriver.BlendCopy, dstRegion, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, NearestFilterShader, nil, false, true, false) } for i := 0; i < len(vertices); i += graphics.VertexFloatCount { vertices[i] *= bigOffscreenScale vertices[i+1] *= bigOffscreenScale } dstRegion.X *= bigOffscreenScale dstRegion.Y *= bigOffscreenScale dstRegion.Width *= bigOffscreenScale dstRegion.Height *= bigOffscreenScale i.bigOffscreenBuffer.DrawTriangles(srcs, vertices, indices, blend, dstRegion, srcRegion, subimageOffsets, shader, uniforms, evenOdd, canSkipMipmap, false) i.bigOffscreenBufferDirty = true return } i.flushBufferIfNeeded() var srcMipmaps [graphics.ShaderImageCount]*mipmap.Mipmap for i, src := range srcs { if src == nil { continue } src.flushBufferIfNeeded() srcMipmaps[i] = src.mipmap } i.mipmap.DrawTriangles(srcMipmaps, vertices, indices, blend, dstRegion, srcRegion, subimageOffsets, shader.shader, uniforms, evenOdd, canSkipMipmap) } func (i *Image) WritePixels(pix []byte, x, y, width, height int) { if width == 1 && height == 1 { // Flush the other buffer to make the buffers exclusive. i.flushBigOffscreenBufferIfNeeded() if i.dotsBuffer == nil { i.dotsBuffer = map[[2]int][4]byte{} } var clr [4]byte copy(clr[:], pix) i.dotsBuffer[[2]int{x, y}] = clr // One square requires 6 indices (= 2 triangles). if len(i.dotsBuffer) >= graphics.IndicesCount/6 { i.flushDotsBufferIfNeeded() } return } i.flushBufferIfNeeded() i.mipmap.WritePixels(pix, x, y, width, height) } func (i *Image) ReadPixels(pixels []byte, x, y, width, height int) { // Check the error existence and avoid unnecessary calls. if theGlobalState.error() != nil { return } i.flushBigOffscreenBufferIfNeeded() if width == 1 && height == 1 { if c, ok := i.dotsBuffer[[2]int{x, y}]; ok { copy(pixels, c[:]) return } // Do not call flushDotsBufferIfNeeded here. This would slow (image/draw).Draw. // See ebiten.TestImageDrawOver. } else { i.flushDotsBufferIfNeeded() } if err := theUI.readPixels(i.mipmap, pixels, x, y, width, height); err != nil { if panicOnErrorOnReadingPixels { panic(err) } theGlobalState.setError(err) } } func (i *Image) DumpScreenshot(name string, blackbg bool) (string, error) { return theUI.dumpScreenshot(i.mipmap, name, blackbg) } func (i *Image) flushBufferIfNeeded() { // The buffers are exclusive and the order should not matter. i.flushDotsBufferIfNeeded() i.flushBigOffscreenBufferIfNeeded() } func (i *Image) flushDotsBufferIfNeeded() { if len(i.dotsBuffer) == 0 { return } l := len(i.dotsBuffer) vs := graphics.Vertices(l * 4) is := make([]uint16, l*6) sx, sy := float32(1), float32(1) var idx int for p, c := range i.dotsBuffer { dx := float32(p[0]) dy := float32(p[1]) crf := float32(c[0]) / 0xff cgf := float32(c[1]) / 0xff cbf := float32(c[2]) / 0xff caf := float32(c[3]) / 0xff vs[graphics.VertexFloatCount*4*idx] = dx vs[graphics.VertexFloatCount*4*idx+1] = dy vs[graphics.VertexFloatCount*4*idx+2] = sx vs[graphics.VertexFloatCount*4*idx+3] = sy vs[graphics.VertexFloatCount*4*idx+4] = crf vs[graphics.VertexFloatCount*4*idx+5] = cgf vs[graphics.VertexFloatCount*4*idx+6] = cbf vs[graphics.VertexFloatCount*4*idx+7] = caf vs[graphics.VertexFloatCount*4*idx+8] = dx + 1 vs[graphics.VertexFloatCount*4*idx+9] = dy vs[graphics.VertexFloatCount*4*idx+10] = sx + 1 vs[graphics.VertexFloatCount*4*idx+11] = sy vs[graphics.VertexFloatCount*4*idx+12] = crf vs[graphics.VertexFloatCount*4*idx+13] = cgf vs[graphics.VertexFloatCount*4*idx+14] = cbf vs[graphics.VertexFloatCount*4*idx+15] = caf vs[graphics.VertexFloatCount*4*idx+16] = dx vs[graphics.VertexFloatCount*4*idx+17] = dy + 1 vs[graphics.VertexFloatCount*4*idx+18] = sx vs[graphics.VertexFloatCount*4*idx+19] = sy + 1 vs[graphics.VertexFloatCount*4*idx+20] = crf vs[graphics.VertexFloatCount*4*idx+21] = cgf vs[graphics.VertexFloatCount*4*idx+22] = cbf vs[graphics.VertexFloatCount*4*idx+23] = caf vs[graphics.VertexFloatCount*4*idx+24] = dx + 1 vs[graphics.VertexFloatCount*4*idx+25] = dy + 1 vs[graphics.VertexFloatCount*4*idx+26] = sx + 1 vs[graphics.VertexFloatCount*4*idx+27] = sy + 1 vs[graphics.VertexFloatCount*4*idx+28] = crf vs[graphics.VertexFloatCount*4*idx+29] = cgf vs[graphics.VertexFloatCount*4*idx+30] = cbf vs[graphics.VertexFloatCount*4*idx+31] = caf is[6*idx] = uint16(4 * idx) is[6*idx+1] = uint16(4*idx + 1) is[6*idx+2] = uint16(4*idx + 2) is[6*idx+3] = uint16(4*idx + 1) is[6*idx+4] = uint16(4*idx + 2) is[6*idx+5] = uint16(4*idx + 3) idx++ } i.dotsBuffer = nil srcs := [graphics.ShaderImageCount]*mipmap.Mipmap{whiteImage.mipmap} dr := graphicsdriver.Region{ X: 0, Y: 0, Width: float32(i.width), Height: float32(i.height), } i.mipmap.DrawTriangles(srcs, vs, is, graphicsdriver.BlendCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, NearestFilterShader.shader, nil, false, true) } func (i *Image) flushBigOffscreenBufferIfNeeded() { if !i.bigOffscreenBufferDirty { return } // Mark the offscreen clearn earlier to avoid recursive calls. i.bigOffscreenBufferDirty = false srcs := [graphics.ShaderImageCount]*Image{i.bigOffscreenBuffer} vs := graphics.QuadVertices( 0, 0, float32(i.width*bigOffscreenScale), float32(i.height*bigOffscreenScale), 1.0/bigOffscreenScale, 0, 0, 1.0/bigOffscreenScale, 0, 0, 1, 1, 1, 1) is := graphics.QuadIndices() dstRegion := graphicsdriver.Region{ X: 0, Y: 0, Width: float32(i.width), Height: float32(i.height), } blend := graphicsdriver.BlendSourceOver if i.bigOffscreenBufferBlend != graphicsdriver.BlendSourceOver { blend = graphicsdriver.BlendCopy } i.DrawTriangles(srcs, vs, is, blend, dstRegion, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, LinearFilterShader, nil, false, true, false) i.bigOffscreenBuffer.clear() i.bigOffscreenBufferDirty = false } func DumpImages(dir string) (string, error) { return theUI.dumpImages(dir) } var ( whiteImage = NewImage(3, 3, atlas.ImageTypeRegular) ) func init() { pix := make([]byte, 4*whiteImage.width*whiteImage.height) for i := range pix { pix[i] = 0xff } // As whiteImage is used at Fill, use WritePixels instead. whiteImage.WritePixels(pix, 0, 0, whiteImage.width, whiteImage.height) } func (i *Image) clear() { i.Fill(0, 0, 0, 0, 0, 0, i.width, i.height) } func (i *Image) Fill(r, g, b, a float32, x, y, width, height int) { dstRegion := graphicsdriver.Region{ X: float32(x), Y: float32(y), Width: float32(width), Height: float32(height), } vs := graphics.QuadVertices( 1, 1, float32(whiteImage.width-1), float32(whiteImage.height-1), float32(i.width), 0, 0, float32(i.height), 0, 0, r, g, b, a) is := graphics.QuadIndices() srcs := [graphics.ShaderImageCount]*Image{whiteImage} i.DrawTriangles(srcs, vs, is, graphicsdriver.BlendCopy, dstRegion, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, NearestFilterShader, nil, false, true, false) }