// Copyright 2019 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package vector provides functions for vector graphics rendering. // // This package is under experiments and the API might be changed with breaking backward compatibility. package vector import ( "math" "github.com/hajimehoshi/ebiten/v2" ) // Direction represents clockwise or counterclockwise. type Direction int const ( Clockwise Direction = iota CounterClockwise ) type point struct { x float32 y float32 } // Path represents a collection of path segments. type Path struct { segs [][]point cur point } // MoveTo skips the current position of the path to the given position (x, y) without adding any strokes. func (p *Path) MoveTo(x, y float32) { p.cur = point{x: x, y: y} p.segs = append(p.segs, []point{p.cur}) } // LineTo adds a line segument to the path, which starts from the current position and ends to the given position (x, y). // // LineTo updates the current position to (x, y). func (p *Path) LineTo(x, y float32) { if len(p.segs) == 0 { p.segs = append(p.segs, []point{{x: x, y: y}}) p.cur = point{x: x, y: y} return } seg := p.segs[len(p.segs)-1] if seg[len(seg)-1].x != x || seg[len(seg)-1].y != y { p.segs[len(p.segs)-1] = append(seg, point{x: x, y: y}) } p.cur = point{x: x, y: y} } // QuadTo adds a quadratic Bézier curve to the path. // (x1, y1) is the control point, and (x2, y2) is the destination. // // QuadTo updates the current position to (x2, y2). func (p *Path) QuadTo(x1, y1, x2, y2 float32) { p.quadTo(x1, y1, x2, y2, 0) } // isPointCloseToSegment detects the distance between a segment (x0, y0)-(x1, y1) and a point (x, y) is less than allow. func isPointCloseToSegment(x, y, x0, y0, x1, y1 float32, allow float32) bool { // Line passing through (x0, y0) and (x1, y1) in the form of ax + by + c = 0 a := y1 - y0 b := -(x1 - x0) c := (x1-x0)*y0 - (y1-y0)*x0 // The distance between a line ax+by+c=0 and (x0, y0) is // |ax0 + by0 + c| / √(a² + b²) return allow*allow*(a*a+b*b) > (a*x+b*y+c)*(a*x+b*y+c) } func (p *Path) quadTo(x1, y1, x2, y2 float32, level int) { if level > 10 { return } x0 := p.cur.x y0 := p.cur.y if isPointCloseToSegment(x1, y1, x0, y0, x2, y2, 0.5) { p.LineTo(x2, y2) return } x01 := (x0 + x1) / 2 y01 := (y0 + y1) / 2 x12 := (x1 + x2) / 2 y12 := (y1 + y2) / 2 x012 := (x01 + x12) / 2 y012 := (y01 + y12) / 2 p.quadTo(x01, y01, x012, y012, level+1) p.quadTo(x12, y12, x2, y2, level+1) } // CubicTo adds a cubic Bézier curve to the path. // (x1, y1) and (x2, y2) are the control points, and (x3, y3) is the destination. // // CubicTo updates the current position to (x3, y3). func (p *Path) CubicTo(x1, y1, x2, y2, x3, y3 float32) { p.cubicTo(x1, y1, x2, y2, x3, y3, 0) } func (p *Path) cubicTo(x1, y1, x2, y2, x3, y3 float32, level int) { if level > 10 { return } x0 := p.cur.x y0 := p.cur.y if isPointCloseToSegment(x1, y1, x0, y0, x3, y3, 0.5) && isPointCloseToSegment(x2, y2, x0, y0, x3, y3, 0.5) { p.LineTo(x3, y3) return } x01 := (x0 + x1) / 2 y01 := (y0 + y1) / 2 x12 := (x1 + x2) / 2 y12 := (y1 + y2) / 2 x23 := (x2 + x3) / 2 y23 := (y2 + y3) / 2 x012 := (x01 + x12) / 2 y012 := (y01 + y12) / 2 x123 := (x12 + x23) / 2 y123 := (y12 + y23) / 2 x0123 := (x012 + x123) / 2 y0123 := (y012 + y123) / 2 p.cubicTo(x01, y01, x012, y012, x0123, y0123, level+1) p.cubicTo(x123, y123, x23, y23, x3, y3, level+1) } func normalize(x, y float32) (float32, float32) { len := float32(math.Hypot(float64(x), float64(y))) return x / len, y / len } func cross(x0, y0, x1, y1 float32) float32 { return x0*y1 - x1*y0 } // ArcTo adds an arc curve to the path. (x1, y1) is the control point, and (x2, y2) is the destination. // // ArcTo updates the current position to (x2, y2). func (p *Path) ArcTo(x1, y1, x2, y2, radius float32) { x0 := p.cur.x y0 := p.cur.y dx0 := x0 - x1 dy0 := y0 - y1 dx1 := x2 - x1 dy1 := y2 - y1 dx0, dy0 = normalize(dx0, dy0) dx1, dy1 = normalize(dx1, dy1) // theta is the angle between two vectors (dx0, dy0) and (dx1, dy1). theta := math.Acos(float64(dx0*dx1 + dy0*dy1)) // TODO: When theta is bigger than π/2, the arc should be split into two. // dist is the distance between the control point and the arc's begenning and ending points. dist := radius / float32(math.Tan(theta/2)) // TODO: What if dist is too big? // (ax0, ay0) is the start of the arc. ax0 := x1 + dx0*dist ay0 := y1 + dy0*dist var cx, cy, a0, a1 float32 var dir Direction if cross(dx0, dy0, dx1, dy1) >= 0 { cx = ax0 - dy0*radius cy = ay0 + dx0*radius a0 = float32(math.Atan2(float64(-dx0), float64(dy0))) a1 = float32(math.Atan2(float64(dx1), float64(-dy1))) dir = CounterClockwise } else { cx = ax0 + dy0*radius cy = ay0 - dx0*radius a0 = float32(math.Atan2(float64(dx0), float64(-dy0))) a1 = float32(math.Atan2(float64(-dx1), float64(dy1))) dir = Clockwise } p.Arc(cx, cy, radius, a0, a1, dir) p.LineTo(x2, y2) } // Arc adds an arc to the path. // (x, y) is the center of the arc. // // Arc updates the current position to the end of the arc. func (p *Path) Arc(x, y, radius, startAngle, endAngle float32, dir Direction) { // Adjust the angles. var da float64 if dir == Clockwise { for startAngle > endAngle { endAngle += 2 * math.Pi } da = float64(endAngle - startAngle) } else { for startAngle < endAngle { startAngle += 2 * math.Pi } da = float64(startAngle - endAngle) } if da >= 2*math.Pi { da = 2 * math.Pi if dir == Clockwise { endAngle = startAngle + 2*math.Pi } else { startAngle = endAngle + 2*math.Pi } } // If the angle is big, splict this into multiple Arc calls. if da > math.Pi/2 { const delta = math.Pi / 3 a := float64(startAngle) if dir == Clockwise { for { p.Arc(x, y, radius, float32(a), float32(math.Min(a+delta, float64(endAngle))), dir) if a+delta >= float64(endAngle) { break } a += delta } } else { for { p.Arc(x, y, radius, float32(a), float32(math.Max(a-delta, float64(endAngle))), dir) if a-delta <= float64(endAngle) { break } a -= delta } } return } sin0, cos0 := math.Sincos(float64(startAngle)) x0 := x + radius*float32(cos0) y0 := y + radius*float32(sin0) sin1, cos1 := math.Sincos(float64(endAngle)) x1 := x + radius*float32(cos1) y1 := y + radius*float32(sin1) p.LineTo(x0, y0) // Calculate the control points for an approximated Bézier curve. // See https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/beziers. l := radius * float32(math.Tan(da/4)*4/3) var cx0, cy0, cx1, cy1 float32 if dir == Clockwise { cx0 = x0 + l*float32(-sin0) cy0 = y0 + l*float32(cos0) cx1 = x1 + l*float32(sin1) cy1 = y1 + l*float32(-cos1) } else { cx0 = x0 + l*float32(sin0) cy0 = y0 + l*float32(-cos0) cx1 = x1 + l*float32(-sin1) cy1 = y1 + l*float32(cos1) } p.CubicTo(cx0, cy0, cx1, cy1, x1, y1) } // AppendVerticesAndIndicesForFilling appends vertices and indices to fill this path and returns them. // AppendVerticesAndIndicesForFilling works in a similar way to the built-in append function. // If the arguments are nils, AppendVerticesAndIndices returns new slices. // // The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1. // // The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with EvenOdd fill mode // in order to render a complex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon. func (p *Path) AppendVerticesAndIndicesForFilling(vertices []ebiten.Vertex, indices []uint16) ([]ebiten.Vertex, []uint16) { // TODO: Add tests. var base uint16 for _, seg := range p.segs { if len(seg) < 3 { continue } for i, pt := range seg { vertices = append(vertices, ebiten.Vertex{ DstX: pt.x, DstY: pt.y, SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }) if i < 2 { continue } indices = append(indices, base, base+uint16(i-1), base+uint16(i)) } base += uint16(len(seg)) } return vertices, indices }