// Copyright 2022 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package hlsl import ( "fmt" "go/constant" "go/token" "math" "regexp" "strings" "github.com/hajimehoshi/ebiten/v2/internal/shaderir" ) const ( vsOut = "varyings" ) type compileContext struct { structNames map[string]string structTypes []shaderir.Type unit shaderir.Unit } func (c *compileContext) structName(p *shaderir.Program, t *shaderir.Type) string { if t.Main != shaderir.Struct { panic("hlsl: the given type at structName must be a struct") } s := t.String() if n, ok := c.structNames[s]; ok { return n } n := fmt.Sprintf("S%d", len(c.structNames)) if c.structNames == nil { c.structNames = map[string]string{} } c.structNames[s] = n c.structTypes = append(c.structTypes, *t) return n } const utilFuncs = `float mod(float x, float y) { return x - y * floor(x/y); } float2 mod(float2 x, float2 y) { return x - y * floor(x/y); } float3 mod(float3 x, float3 y) { return x - y * floor(x/y); } float4 mod(float4 x, float4 y) { return x - y * floor(x/y); } float2x2 float2x2FromScalar(float x) { return float2x2(x, 0, 0, x); } float3x3 float3x3FromScalar(float x) { return float3x3(x, 0, 0, 0, x, 0, 0, 0, x); } float4x4 float4x4FromScalar(float x) { return float4x4(x, 0, 0, 0, 0, x, 0, 0, 0, 0, x, 0, 0, 0, 0, x); }` func Compile(p *shaderir.Program) (vertexShader, pixelShader, prelude string) { offsets := p.UniformOffsetsInDWords() c := &compileContext{ unit: p.Unit, } var lines []string lines = append(lines, strings.Split(utilFuncs, "\n")...) lines = append(lines, "", "struct Varyings {") lines = append(lines, "\tfloat4 Position : SV_POSITION;") if len(p.Varyings) > 0 { for i, v := range p.Varyings { switch i { case 0: lines = append(lines, fmt.Sprintf("\tfloat2 M%d : TEXCOORD;", i)) case 1: lines = append(lines, fmt.Sprintf("\tfloat4 M%d : COLOR0;", i)) default: // Use COLOR[n] as a general purpose varying. if v.Main != shaderir.Vec4 { lines = append(lines, fmt.Sprintf("\t?(unexpected type: %s) M%d : COLOR%d;", v, i, i-1)) } else { lines = append(lines, fmt.Sprintf("\tfloat4 M%d : COLOR%d;", i, i-1)) } } } } lines = append(lines, "};") prelude = strings.Join(lines, "\n") lines = append(lines, "", "{{.Structs}}") if len(p.Uniforms) > 0 { lines = append(lines, "") lines = append(lines, "cbuffer Uniforms : register(b0) {") for i, t := range p.Uniforms { // packingoffset is not mandatory, but this is useful to ensure the correct offset is used. offset := fmt.Sprintf("c%d", offsets[i]/shaderir.UniformVariableBoundaryInDWords) switch offsets[i] % shaderir.UniformVariableBoundaryInDWords { case 1: offset += ".y" case 2: offset += ".z" case 3: offset += ".w" } lines = append(lines, fmt.Sprintf("\t%s : packoffset(%s);", c.varDecl(p, &t, fmt.Sprintf("U%d", i)), offset)) } lines = append(lines, "}") } if p.TextureCount > 0 { lines = append(lines, "") for i := 0; i < p.TextureCount; i++ { lines = append(lines, fmt.Sprintf("Texture2D T%[1]d : register(t%[1]d);", i)) } if c.unit == shaderir.Texels { lines = append(lines, "SamplerState samp : register(s0);") } } vslines := make([]string, len(lines)) copy(vslines, lines) pslines := make([]string, len(lines)) copy(pslines, lines) var vsfuncs []*shaderir.Func if p.VertexFunc.Block != nil { vsfuncs = p.ReachableFuncsFromBlock(p.VertexFunc.Block) } else { // Use all the functions for testing. vsfuncs = make([]*shaderir.Func, 0, len(p.Funcs)) for _, f := range p.Funcs { f := f vsfuncs = append(vsfuncs, &f) } } if len(vsfuncs) > 0 { vslines = append(vslines, "") for _, f := range vsfuncs { vslines = append(vslines, c.function(p, f, true)...) } for _, f := range vsfuncs { if len(vslines) > 0 && vslines[len(vslines)-1] != "" { vslines = append(vslines, "") } vslines = append(vslines, c.function(p, f, false)...) } } if p.VertexFunc.Block != nil && len(p.VertexFunc.Block.Stmts) > 0 { vslines = append(vslines, "") var args []string for i, a := range p.Attributes { switch i { case 0: args = append(args, fmt.Sprintf("float2 A%d : POSITION", i)) case 1: args = append(args, fmt.Sprintf("float2 A%d : TEXCOORD", i)) case 2: args = append(args, fmt.Sprintf("float4 A%d : COLOR0", i)) default: // Use COLOR[n] as a general purpose varying. if a.Main != shaderir.Vec4 { args = append(args, fmt.Sprintf("?(unexpected type: %s) A%d : COLOR%d", a, i, i-2)) } else { args = append(args, fmt.Sprintf("float4 A%d : COLOR%d", i, i-2)) } } } vslines = append(vslines, "Varyings VSMain("+strings.Join(args, ", ")+") {") vslines = append(vslines, fmt.Sprintf("\tVaryings %s;", vsOut)) vslines = append(vslines, c.block(p, p.VertexFunc.Block, p.VertexFunc.Block, 0)...) if last := fmt.Sprintf("\treturn %s;", vsOut); vslines[len(vslines)-1] != last { vslines = append(vslines, last) } vslines = append(vslines, "}") } var psfuncs []*shaderir.Func if p.FragmentFunc.Block != nil { psfuncs = p.ReachableFuncsFromBlock(p.FragmentFunc.Block) } else { // Use all the functions for testing. psfuncs = make([]*shaderir.Func, 0, len(p.Funcs)) for _, f := range p.Funcs { f := f psfuncs = append(psfuncs, &f) } } if len(psfuncs) > 0 { pslines = append(pslines, "") for _, f := range psfuncs { pslines = append(pslines, c.function(p, f, true)...) } for _, f := range psfuncs { if len(pslines) > 0 && pslines[len(pslines)-1] != "" { pslines = append(pslines, "") } pslines = append(pslines, c.function(p, f, false)...) } } if p.FragmentFunc.Block != nil && len(p.FragmentFunc.Block.Stmts) > 0 { pslines = append(pslines, "") pslines = append(pslines, fmt.Sprintf("float4 PSMain(Varyings %s) : SV_TARGET {", vsOut)) pslines = append(pslines, c.block(p, p.FragmentFunc.Block, p.FragmentFunc.Block, 0)...) pslines = append(pslines, "}") } vertexShader = strings.Join(vslines, "\n") pixelShader = strings.Join(pslines, "\n") // Struct types are determined after converting the program. shaders := []string{vertexShader, pixelShader} for i, shader := range shaders { if len(c.structTypes) > 0 { var stlines []string for i, t := range c.structTypes { stlines = append(stlines, fmt.Sprintf("struct S%d {", i)) for j, st := range t.Sub { stlines = append(stlines, fmt.Sprintf("\t%s;", c.varDecl(p, &st, fmt.Sprintf("M%d", j)))) } stlines = append(stlines, "};") } st := strings.Join(stlines, "\n") shader = strings.ReplaceAll(shader, "{{.Structs}}", st) } else { shader = strings.ReplaceAll(shader, "{{.Structs}}", "") } nls := regexp.MustCompile(`\n\n+`) shader = nls.ReplaceAllString(shader, "\n\n") shader = strings.TrimSpace(shader) + "\n" shaders[i] = shader } vertexShader = shaders[0] pixelShader = shaders[1] return } func (c *compileContext) typ(p *shaderir.Program, t *shaderir.Type) (string, string) { switch t.Main { case shaderir.None: return "void", "" case shaderir.Struct: return c.structName(p, t), "" default: return typeString(t) } } func (c *compileContext) varDecl(p *shaderir.Program, t *shaderir.Type, varname string) string { switch t.Main { case shaderir.None: return "?(none)" case shaderir.Struct: return fmt.Sprintf("%s %s", c.structName(p, t), varname) default: t0, t1 := typeString(t) return fmt.Sprintf("%s %s%s", t0, varname, t1) } } func (c *compileContext) varInit(p *shaderir.Program, t *shaderir.Type) string { switch t.Main { case shaderir.None: return "?(none)" case shaderir.Array: init := c.varInit(p, &t.Sub[0]) es := make([]string, 0, t.Length) for i := 0; i < t.Length; i++ { es = append(es, init) } t0, t1 := typeString(t) return fmt.Sprintf("%s%s(%s)", t0, t1, strings.Join(es, ", ")) case shaderir.Struct: panic("not implemented") case shaderir.Bool: return "false" case shaderir.Int, shaderir.IVec2, shaderir.IVec3, shaderir.IVec4: return "0" case shaderir.Float, shaderir.Vec2, shaderir.Vec3, shaderir.Vec4, shaderir.Mat2, shaderir.Mat3, shaderir.Mat4: return "0.0" default: t0, t1 := c.typ(p, t) panic(fmt.Sprintf("?(unexpected type: %s%s)", t0, t1)) } } func (c *compileContext) function(p *shaderir.Program, f *shaderir.Func, prototype bool) []string { var args []string var idx int for _, t := range f.InParams { args = append(args, "in "+c.varDecl(p, &t, fmt.Sprintf("l%d", idx))) idx++ } for _, t := range f.OutParams { args = append(args, "out "+c.varDecl(p, &t, fmt.Sprintf("l%d", idx))) idx++ } argsstr := "void" if len(args) > 0 { argsstr = strings.Join(args, ", ") } t0, t1 := c.typ(p, &f.Return) sig := fmt.Sprintf("%s%s F%d(%s)", t0, t1, f.Index, argsstr) var lines []string if prototype { lines = append(lines, fmt.Sprintf("%s;", sig)) return lines } lines = append(lines, fmt.Sprintf("%s {", sig)) lines = append(lines, c.block(p, f.Block, f.Block, 0)...) lines = append(lines, "}") return lines } func constantToNumberLiteral(v constant.Value) string { switch v.Kind() { case constant.Bool: if constant.BoolVal(v) { return "true" } return "false" case constant.Int: x, _ := constant.Int64Val(v) return fmt.Sprintf("%d", x) case constant.Float: x, _ := constant.Float64Val(v) if i := math.Floor(x); i == x { return fmt.Sprintf("%d.0", int64(i)) } return fmt.Sprintf("%.10e", x) } return fmt.Sprintf("?(unexpected literal: %s)", v) } func (c *compileContext) localVariableName(p *shaderir.Program, topBlock *shaderir.Block, idx int) string { switch topBlock { case p.VertexFunc.Block: na := len(p.Attributes) nv := len(p.Varyings) switch { case idx < na: return fmt.Sprintf("A%d", idx) case idx == na: return fmt.Sprintf("%s.Position", vsOut) case idx < na+nv+1: return fmt.Sprintf("%s.M%d", vsOut, idx-na-1) default: return fmt.Sprintf("l%d", idx-(na+nv+1)) } case p.FragmentFunc.Block: nv := len(p.Varyings) switch { case idx == 0: return fmt.Sprintf("%s.Position", vsOut) case idx < nv+1: return fmt.Sprintf("%s.M%d", vsOut, idx-1) default: return fmt.Sprintf("l%d", idx-(nv+1)) } default: return fmt.Sprintf("l%d", idx) } } func (c *compileContext) initVariable(p *shaderir.Program, topBlock, block *shaderir.Block, index int, decl bool, level int) []string { idt := strings.Repeat("\t", level+1) name := c.localVariableName(p, topBlock, index) t := p.LocalVariableType(topBlock, block, index) var lines []string switch t.Main { case shaderir.Array: if decl { lines = append(lines, fmt.Sprintf("%s%s;", idt, c.varDecl(p, &t, name))) } init := c.varInit(p, &t.Sub[0]) for i := 0; i < t.Length; i++ { lines = append(lines, fmt.Sprintf("%s%s[%d] = %s;", idt, name, i, init)) } case shaderir.None: // The type is None e.g., when the variable is a for-loop counter. default: if decl { lines = append(lines, fmt.Sprintf("%s%s = %s;", idt, c.varDecl(p, &t, name), c.varInit(p, &t))) } else { lines = append(lines, fmt.Sprintf("%s%s = %s;", idt, name, c.varInit(p, &t))) } } return lines } func (c *compileContext) block(p *shaderir.Program, topBlock, block *shaderir.Block, level int) []string { if block == nil { return nil } var lines []string for i := range block.LocalVars { lines = append(lines, c.initVariable(p, topBlock, block, block.LocalVarIndexOffset+i, true, level)...) } var expr func(e *shaderir.Expr) string expr = func(e *shaderir.Expr) string { switch e.Type { case shaderir.NumberExpr: return constantToNumberLiteral(e.Const) case shaderir.UniformVariable: return fmt.Sprintf("U%d", e.Index) case shaderir.TextureVariable: return fmt.Sprintf("T%d", e.Index) case shaderir.LocalVariable: return c.localVariableName(p, topBlock, e.Index) case shaderir.StructMember: return fmt.Sprintf("M%d", e.Index) case shaderir.BuiltinFuncExpr: return c.builtinFuncString(e.BuiltinFunc) case shaderir.SwizzlingExpr: if !shaderir.IsValidSwizzling(e.Swizzling) { return fmt.Sprintf("?(unexpected swizzling: %s)", e.Swizzling) } return e.Swizzling case shaderir.FunctionExpr: return fmt.Sprintf("F%d", e.Index) case shaderir.Unary: var op string switch e.Op { case shaderir.Add, shaderir.Sub, shaderir.NotOp: op = opString(e.Op) default: op = fmt.Sprintf("?(unexpected op: %d)", e.Op) } return fmt.Sprintf("%s(%s)", op, expr(&e.Exprs[0])) case shaderir.Binary: switch e.Op { case shaderir.VectorEqualOp: return fmt.Sprintf("all((%s) == (%s))", expr(&e.Exprs[0]), expr(&e.Exprs[1])) case shaderir.VectorNotEqualOp: return fmt.Sprintf("!all((%s) == (%s))", expr(&e.Exprs[0]), expr(&e.Exprs[1])) case shaderir.MatrixMul: // If either is a matrix, use the mul function. // Swap the order of the lhs and the rhs since matrices are row-major in HLSL. return fmt.Sprintf("mul(%s, %s)", expr(&e.Exprs[1]), expr(&e.Exprs[0])) } return fmt.Sprintf("(%s) %s (%s)", expr(&e.Exprs[0]), opString(e.Op), expr(&e.Exprs[1])) case shaderir.Selection: return fmt.Sprintf("(%s) ? (%s) : (%s)", expr(&e.Exprs[0]), expr(&e.Exprs[1]), expr(&e.Exprs[2])) case shaderir.Call: callee := e.Exprs[0] var args []string for _, exp := range e.Exprs[1:] { args = append(args, expr(&exp)) } if callee.Type == shaderir.BuiltinFuncExpr { switch callee.BuiltinFunc { case shaderir.Vec2F, shaderir.Vec3F, shaderir.Vec4F, shaderir.IVec2F, shaderir.IVec3F, shaderir.IVec4F: if len(args) == 1 { // Use casting. For example, `float4(1)` doesn't work. return fmt.Sprintf("(%s)(%s)", expr(&e.Exprs[0]), args[0]) } case shaderir.Mat2F: if len(args) == 1 { // In HSLS, casting a scalar to a matrix initializes all the components. // There seems no easy way to have an identity matrix. return fmt.Sprintf("float2x2FromScalar(%s)", args[0]) } case shaderir.Mat3F: if len(args) == 1 { return fmt.Sprintf("float3x3FromScalar(%s)", args[0]) } case shaderir.Mat4F: if len(args) == 1 { return fmt.Sprintf("float4x4FromScalar(%s)", args[0]) } case shaderir.TexelAt: switch c.unit { case shaderir.Pixels: return fmt.Sprintf("%s.Load(int3(%s, 0))", args[0], strings.Join(args[1:], ", ")) case shaderir.Texels: return fmt.Sprintf("%s.Sample(samp, %s)", args[0], strings.Join(args[1:], ", ")) default: panic(fmt.Sprintf("hlsl: unexpected unit: %d", p.Unit)) } } } return fmt.Sprintf("%s(%s)", expr(&e.Exprs[0]), strings.Join(args, ", ")) case shaderir.FieldSelector: return fmt.Sprintf("(%s).%s", expr(&e.Exprs[0]), expr(&e.Exprs[1])) case shaderir.Index: return fmt.Sprintf("(%s)[%s]", expr(&e.Exprs[0]), expr(&e.Exprs[1])) default: return fmt.Sprintf("?(unexpected expr: %d)", e.Type) } } idt := strings.Repeat("\t", level+1) for _, s := range block.Stmts { switch s.Type { case shaderir.ExprStmt: lines = append(lines, fmt.Sprintf("%s%s;", idt, expr(&s.Exprs[0]))) case shaderir.BlockStmt: lines = append(lines, idt+"{") lines = append(lines, c.block(p, topBlock, s.Blocks[0], level+1)...) lines = append(lines, idt+"}") case shaderir.Assign: lhs := s.Exprs[0] rhs := s.Exprs[1] if lhs.Type == shaderir.LocalVariable { if t := p.LocalVariableType(topBlock, block, lhs.Index); t.Main == shaderir.Array { for i := 0; i < t.Length; i++ { lines = append(lines, fmt.Sprintf("%[1]s%[2]s[%[3]d] = %[4]s[%[3]d];", idt, expr(&lhs), i, expr(&rhs))) } continue } } lines = append(lines, fmt.Sprintf("%s%s = %s;", idt, expr(&lhs), expr(&rhs))) case shaderir.Init: lines = append(lines, c.initVariable(p, topBlock, block, s.InitIndex, false, level)...) case shaderir.If: lines = append(lines, fmt.Sprintf("%sif (%s) {", idt, expr(&s.Exprs[0]))) lines = append(lines, c.block(p, topBlock, s.Blocks[0], level+1)...) if len(s.Blocks) > 1 { lines = append(lines, fmt.Sprintf("%s} else {", idt)) lines = append(lines, c.block(p, topBlock, s.Blocks[1], level+1)...) } lines = append(lines, fmt.Sprintf("%s}", idt)) case shaderir.For: v := c.localVariableName(p, topBlock, s.ForVarIndex) var delta string switch val, _ := constant.Float64Val(s.ForDelta); val { case 0: delta = fmt.Sprintf("?(unexpected delta: %v)", s.ForDelta) case 1: delta = fmt.Sprintf("%s++", v) case -1: delta = fmt.Sprintf("%s--", v) default: d := s.ForDelta if val > 0 { delta = fmt.Sprintf("%s += %s", v, constantToNumberLiteral(d)) } else { d = constant.UnaryOp(token.SUB, d, 0) delta = fmt.Sprintf("%s -= %s", v, constantToNumberLiteral(d)) } } var op string switch s.ForOp { case shaderir.LessThanOp, shaderir.LessThanEqualOp, shaderir.GreaterThanOp, shaderir.GreaterThanEqualOp, shaderir.EqualOp, shaderir.NotEqualOp: op = opString(s.ForOp) default: op = fmt.Sprintf("?(unexpected op: %d)", s.ForOp) } t := s.ForVarType init := constantToNumberLiteral(s.ForInit) end := constantToNumberLiteral(s.ForEnd) t0, t1 := typeString(&t) lines = append(lines, fmt.Sprintf("%sfor (%s %s%s = %s; %s %s %s; %s) {", idt, t0, v, t1, init, v, op, end, delta)) lines = append(lines, c.block(p, topBlock, s.Blocks[0], level+1)...) lines = append(lines, fmt.Sprintf("%s}", idt)) case shaderir.Continue: lines = append(lines, idt+"continue;") case shaderir.Break: lines = append(lines, idt+"break;") case shaderir.Return: switch { case topBlock == p.VertexFunc.Block: lines = append(lines, fmt.Sprintf("%sreturn %s;", idt, vsOut)) case len(s.Exprs) == 0: lines = append(lines, idt+"return;") default: lines = append(lines, fmt.Sprintf("%sreturn %s;", idt, expr(&s.Exprs[0]))) } case shaderir.Discard: // 'discard' is invoked only in the fragment shader entry point. lines = append(lines, idt+"discard;", idt+"return float4(0.0, 0.0, 0.0, 0.0);") default: lines = append(lines, fmt.Sprintf("%s?(unexpected stmt: %d)", idt, s.Type)) } } return lines }