// The Module object: Our interface to the outside world. We import // and export values on it. There are various ways Module can be used: // 1. Not defined. We create it here // 2. A function parameter, function(Module) { ..generated code.. } // 3. pre-run appended it, var Module = {}; ..generated code.. // 4. External script tag defines var Module. // We need to check if Module already exists (e.g. case 3 above). // Substitution will be replaced with actual code on later stage of the build, // this way Closure Compiler will not mangle it (e.g. case 4. above). // Note that if you want to run closure, and also to use Module // after the generated code, you will need to define var Module = {}; // before the code. Then that object will be used in the code, and you // can continue to use Module afterwards as well. var Module = typeof Module !== 'undefined' ? Module : {}; // --pre-jses are emitted after the Module integration code, so that they can // refer to Module (if they choose; they can also define Module) // {{PRE_JSES}} // Sometimes an existing Module object exists with properties // meant to overwrite the default module functionality. Here // we collect those properties and reapply _after_ we configure // the current environment's defaults to avoid having to be so // defensive during initialization. var moduleOverrides = {}; var key; for (key in Module) { if (Module.hasOwnProperty(key)) { moduleOverrides[key] = Module[key]; } } Module['arguments'] = []; Module['thisProgram'] = './this.program'; Module['quit'] = function(status, toThrow) { throw toThrow; }; Module['preRun'] = []; Module['postRun'] = []; // The environment setup code below is customized to use Module. // *** Environment setup code *** var ENVIRONMENT_IS_WEB = false; var ENVIRONMENT_IS_WORKER = false; var ENVIRONMENT_IS_NODE = false; var ENVIRONMENT_IS_SHELL = false; // Three configurations we can be running in: // 1) We could be the application main() thread running in the main JS UI thread. (ENVIRONMENT_IS_WORKER == false and ENVIRONMENT_IS_PTHREAD == false) // 2) We could be the application main() thread proxied to worker. (with Emscripten -s PROXY_TO_WORKER=1) (ENVIRONMENT_IS_WORKER == true, ENVIRONMENT_IS_PTHREAD == false) // 3) We could be an application pthread running in a worker. (ENVIRONMENT_IS_WORKER == true and ENVIRONMENT_IS_PTHREAD == true) if (Module['ENVIRONMENT']) { if (Module['ENVIRONMENT'] === 'WEB') { ENVIRONMENT_IS_WEB = true; } else if (Module['ENVIRONMENT'] === 'WORKER') { ENVIRONMENT_IS_WORKER = true; } else if (Module['ENVIRONMENT'] === 'NODE') { ENVIRONMENT_IS_NODE = true; } else if (Module['ENVIRONMENT'] === 'SHELL') { ENVIRONMENT_IS_SHELL = true; } else { throw new Error('Module[\'ENVIRONMENT\'] value is not valid. must be one of: WEB|WORKER|NODE|SHELL.'); } } else { ENVIRONMENT_IS_WEB = typeof window === 'object'; ENVIRONMENT_IS_WORKER = typeof importScripts === 'function'; ENVIRONMENT_IS_NODE = typeof process === 'object' && typeof require === 'function' && !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_WORKER; ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; } if (ENVIRONMENT_IS_NODE) { // Expose functionality in the same simple way that the shells work // Note that we pollute the global namespace here, otherwise we break in node var nodeFS; var nodePath; Module['read'] = function shell_read(filename, binary) { var ret; if (!nodeFS) nodeFS = require('fs'); if (!nodePath) nodePath = require('path'); filename = nodePath['normalize'](filename); ret = nodeFS['readFileSync'](filename); return binary ? ret : ret.toString(); }; Module['readBinary'] = function readBinary(filename) { var ret = Module['read'](filename, true); if (!ret.buffer) { ret = new Uint8Array(ret); } assert(ret.buffer); return ret; }; if (process['argv'].length > 1) { Module['thisProgram'] = process['argv'][1].replace(/\\/g, '/'); } Module['arguments'] = process['argv'].slice(2); if (typeof module !== 'undefined') { module['exports'] = Module; } process['on']('uncaughtException', function(ex) { // suppress ExitStatus exceptions from showing an error if (!(ex instanceof ExitStatus)) { throw ex; } }); // Currently node will swallow unhandled rejections, but this behavior is // deprecated, and in the future it will exit with error status. process['on']('unhandledRejection', function(reason, p) { process['exit'](1); }); Module['inspect'] = function () { return '[Emscripten Module object]'; }; } else if (ENVIRONMENT_IS_SHELL) { if (typeof read != 'undefined') { Module['read'] = function shell_read(f) { return read(f); }; } Module['readBinary'] = function readBinary(f) { var data; if (typeof readbuffer === 'function') { return new Uint8Array(readbuffer(f)); } data = read(f, 'binary'); assert(typeof data === 'object'); return data; }; if (typeof scriptArgs != 'undefined') { Module['arguments'] = scriptArgs; } else if (typeof arguments != 'undefined') { Module['arguments'] = arguments; } if (typeof quit === 'function') { Module['quit'] = function(status, toThrow) { quit(status); } } } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { Module['read'] = function shell_read(url) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); xhr.send(null); return xhr.responseText; }; if (ENVIRONMENT_IS_WORKER) { Module['readBinary'] = function readBinary(url) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); xhr.responseType = 'arraybuffer'; xhr.send(null); return new Uint8Array(xhr.response); }; } Module['readAsync'] = function readAsync(url, onload, onerror) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, true); xhr.responseType = 'arraybuffer'; xhr.onload = function xhr_onload() { if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0 onload(xhr.response); return; } onerror(); }; xhr.onerror = onerror; xhr.send(null); }; Module['setWindowTitle'] = function(title) { document.title = title }; } else { throw new Error('not compiled for this environment'); } // console.log is checked first, as 'print' on the web will open a print dialogue // printErr is preferable to console.warn (works better in shells) // bind(console) is necessary to fix IE/Edge closed dev tools panel behavior. Module['print'] = typeof console !== 'undefined' ? console.log.bind(console) : (typeof print !== 'undefined' ? print : null); Module['printErr'] = typeof printErr !== 'undefined' ? printErr : ((typeof console !== 'undefined' && console.warn.bind(console)) || Module['print']); // *** Environment setup code *** // Closure helpers Module.print = Module['print']; Module.printErr = Module['printErr']; // Merge back in the overrides for (key in moduleOverrides) { if (moduleOverrides.hasOwnProperty(key)) { Module[key] = moduleOverrides[key]; } } // Free the object hierarchy contained in the overrides, this lets the GC // reclaim data used e.g. in memoryInitializerRequest, which is a large typed array. moduleOverrides = undefined; // {{PREAMBLE_ADDITIONS}} var STACK_ALIGN = 16; function staticAlloc(size) { assert(!staticSealed); var ret = STATICTOP; STATICTOP = (STATICTOP + size + 15) & -16; return ret; } function dynamicAlloc(size) { assert(DYNAMICTOP_PTR); var ret = HEAP32[DYNAMICTOP_PTR>>2]; var end = (ret + size + 15) & -16; HEAP32[DYNAMICTOP_PTR>>2] = end; if (end >= TOTAL_MEMORY) { var success = enlargeMemory(); if (!success) { HEAP32[DYNAMICTOP_PTR>>2] = ret; return 0; } } return ret; } function alignMemory(size, factor) { if (!factor) factor = STACK_ALIGN; // stack alignment (16-byte) by default var ret = size = Math.ceil(size / factor) * factor; return ret; } function getNativeTypeSize(type) { switch (type) { case 'i1': case 'i8': return 1; case 'i16': return 2; case 'i32': return 4; case 'i64': return 8; case 'float': return 4; case 'double': return 8; default: { if (type[type.length-1] === '*') { return 4; // A pointer } else if (type[0] === 'i') { var bits = parseInt(type.substr(1)); assert(bits % 8 === 0); return bits / 8; } else { return 0; } } } } function warnOnce(text) { if (!warnOnce.shown) warnOnce.shown = {}; if (!warnOnce.shown[text]) { warnOnce.shown[text] = 1; Module.printErr(text); } } var asm2wasmImports = { // special asm2wasm imports "f64-rem": function(x, y) { return x % y; }, "debugger": function() { debugger; } }; var jsCallStartIndex = 1; var functionPointers = new Array(0); // 'sig' parameter is only used on LLVM wasm backend function addFunction(func, sig) { var base = 0; for (var i = base; i < base + 0; i++) { if (!functionPointers[i]) { functionPointers[i] = func; return jsCallStartIndex + i; } } throw 'Finished up all reserved function pointers. Use a higher value for RESERVED_FUNCTION_POINTERS.'; } function removeFunction(index) { functionPointers[index-jsCallStartIndex] = null; } var funcWrappers = {}; function getFuncWrapper(func, sig) { if (!func) return; // on null pointer, return undefined assert(sig); if (!funcWrappers[sig]) { funcWrappers[sig] = {}; } var sigCache = funcWrappers[sig]; if (!sigCache[func]) { // optimize away arguments usage in common cases if (sig.length === 1) { sigCache[func] = function dynCall_wrapper() { return dynCall(sig, func); }; } else if (sig.length === 2) { sigCache[func] = function dynCall_wrapper(arg) { return dynCall(sig, func, [arg]); }; } else { // general case sigCache[func] = function dynCall_wrapper() { return dynCall(sig, func, Array.prototype.slice.call(arguments)); }; } } return sigCache[func]; } function makeBigInt(low, high, unsigned) { return unsigned ? ((+((low>>>0)))+((+((high>>>0)))*4294967296.0)) : ((+((low>>>0)))+((+((high|0)))*4294967296.0)); } function dynCall(sig, ptr, args) { if (args && args.length) { return Module['dynCall_' + sig].apply(null, [ptr].concat(args)); } else { return Module['dynCall_' + sig].call(null, ptr); } } var Runtime = { // FIXME backwards compatibility layer for ports. Support some Runtime.* // for now, fix it there, then remove it from here. That way we // can minimize any period of breakage. dynCall: dynCall, // for SDL2 port }; // The address globals begin at. Very low in memory, for code size and optimization opportunities. // Above 0 is static memory, starting with globals. // Then the stack. // Then 'dynamic' memory for sbrk. var GLOBAL_BASE = 1024; // === Preamble library stuff === // Documentation for the public APIs defined in this file must be updated in: // site/source/docs/api_reference/preamble.js.rst // A prebuilt local version of the documentation is available at: // site/build/text/docs/api_reference/preamble.js.txt // You can also build docs locally as HTML or other formats in site/ // An online HTML version (which may be of a different version of Emscripten) // is up at http://kripken.github.io/emscripten-site/docs/api_reference/preamble.js.html //======================================== // Runtime essentials //======================================== var ABORT = 0; // whether we are quitting the application. no code should run after this. set in exit() and abort() var EXITSTATUS = 0; /** @type {function(*, string=)} */ function assert(condition, text) { if (!condition) { abort('Assertion failed: ' + text); } } var globalScope = this; // Returns the C function with a specified identifier (for C++, you need to do manual name mangling) function getCFunc(ident) { var func = Module['_' + ident]; // closure exported function assert(func, 'Cannot call unknown function ' + ident + ', make sure it is exported'); return func; } var JSfuncs = { // Helpers for cwrap -- it can't refer to Runtime directly because it might // be renamed by closure, instead it calls JSfuncs['stackSave'].body to find // out what the minified function name is. 'stackSave': function() { stackSave() }, 'stackRestore': function() { stackRestore() }, // type conversion from js to c 'arrayToC' : function(arr) { var ret = stackAlloc(arr.length); writeArrayToMemory(arr, ret); return ret; }, 'stringToC' : function(str) { var ret = 0; if (str !== null && str !== undefined && str !== 0) { // null string // at most 4 bytes per UTF-8 code point, +1 for the trailing '\0' var len = (str.length << 2) + 1; ret = stackAlloc(len); stringToUTF8(str, ret, len); } return ret; } }; // For fast lookup of conversion functions var toC = { 'string': JSfuncs['stringToC'], 'array': JSfuncs['arrayToC'] }; // C calling interface. function ccall (ident, returnType, argTypes, args, opts) { var func = getCFunc(ident); var cArgs = []; var stack = 0; if (args) { for (var i = 0; i < args.length; i++) { var converter = toC[argTypes[i]]; if (converter) { if (stack === 0) stack = stackSave(); cArgs[i] = converter(args[i]); } else { cArgs[i] = args[i]; } } } var ret = func.apply(null, cArgs); if (returnType === 'string') ret = Pointer_stringify(ret); else if (returnType === 'boolean') ret = Boolean(ret); if (stack !== 0) { stackRestore(stack); } return ret; } function cwrap (ident, returnType, argTypes) { argTypes = argTypes || []; var cfunc = getCFunc(ident); // When the function takes numbers and returns a number, we can just return // the original function var numericArgs = argTypes.every(function(type){ return type === 'number'}); var numericRet = returnType !== 'string'; if (numericRet && numericArgs) { return cfunc; } return function() { return ccall(ident, returnType, argTypes, arguments); } } /** @type {function(number, number, string, boolean=)} */ function setValue(ptr, value, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit switch(type) { case 'i1': HEAP8[((ptr)>>0)]=value; break; case 'i8': HEAP8[((ptr)>>0)]=value; break; case 'i16': HEAP16[((ptr)>>1)]=value; break; case 'i32': HEAP32[((ptr)>>2)]=value; break; case 'i64': (tempI64 = [value>>>0,(tempDouble=value,(+(Math_abs(tempDouble))) >= 1.0 ? (tempDouble > 0.0 ? ((Math_min((+(Math_floor((tempDouble)/4294967296.0))), 4294967295.0))|0)>>>0 : (~~((+(Math_ceil((tempDouble - +(((~~(tempDouble)))>>>0))/4294967296.0)))))>>>0) : 0)],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break; case 'float': HEAPF32[((ptr)>>2)]=value; break; case 'double': HEAPF64[((ptr)>>3)]=value; break; default: abort('invalid type for setValue: ' + type); } } /** @type {function(number, string, boolean=)} */ function getValue(ptr, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit switch(type) { case 'i1': return HEAP8[((ptr)>>0)]; case 'i8': return HEAP8[((ptr)>>0)]; case 'i16': return HEAP16[((ptr)>>1)]; case 'i32': return HEAP32[((ptr)>>2)]; case 'i64': return HEAP32[((ptr)>>2)]; case 'float': return HEAPF32[((ptr)>>2)]; case 'double': return HEAPF64[((ptr)>>3)]; default: abort('invalid type for getValue: ' + type); } return null; } var ALLOC_NORMAL = 0; // Tries to use _malloc() var ALLOC_STACK = 1; // Lives for the duration of the current function call var ALLOC_STATIC = 2; // Cannot be freed var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk var ALLOC_NONE = 4; // Do not allocate // allocate(): This is for internal use. You can use it yourself as well, but the interface // is a little tricky (see docs right below). The reason is that it is optimized // for multiple syntaxes to save space in generated code. So you should // normally not use allocate(), and instead allocate memory using _malloc(), // initialize it with setValue(), and so forth. // @slab: An array of data, or a number. If a number, then the size of the block to allocate, // in *bytes* (note that this is sometimes confusing: the next parameter does not // affect this!) // @types: Either an array of types, one for each byte (or 0 if no type at that position), // or a single type which is used for the entire block. This only matters if there // is initial data - if @slab is a number, then this does not matter at all and is // ignored. // @allocator: How to allocate memory, see ALLOC_* /** @type {function((TypedArray|Array|number), string, number, number=)} */ function allocate(slab, types, allocator, ptr) { var zeroinit, size; if (typeof slab === 'number') { zeroinit = true; size = slab; } else { zeroinit = false; size = slab.length; } var singleType = typeof types === 'string' ? types : null; var ret; if (allocator == ALLOC_NONE) { ret = ptr; } else { ret = [typeof _malloc === 'function' ? _malloc : staticAlloc, stackAlloc, staticAlloc, dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length)); } if (zeroinit) { var stop; ptr = ret; assert((ret & 3) == 0); stop = ret + (size & ~3); for (; ptr < stop; ptr += 4) { HEAP32[((ptr)>>2)]=0; } stop = ret + size; while (ptr < stop) { HEAP8[((ptr++)>>0)]=0; } return ret; } if (singleType === 'i8') { if (slab.subarray || slab.slice) { HEAPU8.set(/** @type {!Uint8Array} */ (slab), ret); } else { HEAPU8.set(new Uint8Array(slab), ret); } return ret; } var i = 0, type, typeSize, previousType; while (i < size) { var curr = slab[i]; type = singleType || types[i]; if (type === 0) { i++; continue; } if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later setValue(ret+i, curr, type); // no need to look up size unless type changes, so cache it if (previousType !== type) { typeSize = getNativeTypeSize(type); previousType = type; } i += typeSize; } return ret; } // Allocate memory during any stage of startup - static memory early on, dynamic memory later, malloc when ready function getMemory(size) { if (!staticSealed) return staticAlloc(size); if (!runtimeInitialized) return dynamicAlloc(size); return _malloc(size); } /** @type {function(number, number=)} */ function Pointer_stringify(ptr, length) { if (length === 0 || !ptr) return ''; // Find the length, and check for UTF while doing so var hasUtf = 0; var t; var i = 0; while (1) { t = HEAPU8[(((ptr)+(i))>>0)]; hasUtf |= t; if (t == 0 && !length) break; i++; if (length && i == length) break; } if (!length) length = i; var ret = ''; if (hasUtf < 128) { var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack var curr; while (length > 0) { curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK))); ret = ret ? ret + curr : curr; ptr += MAX_CHUNK; length -= MAX_CHUNK; } return ret; } return UTF8ToString(ptr); } // Given a pointer 'ptr' to a null-terminated ASCII-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function AsciiToString(ptr) { var str = ''; while (1) { var ch = HEAP8[((ptr++)>>0)]; if (!ch) return str; str += String.fromCharCode(ch); } } // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in ASCII form. The copy will require at most str.length+1 bytes of space in the HEAP. function stringToAscii(str, outPtr) { return writeAsciiToMemory(str, outPtr, false); } // Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the given array that contains uint8 values, returns // a copy of that string as a Javascript String object. var UTF8Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf8') : undefined; function UTF8ArrayToString(u8Array, idx) { var endPtr = idx; // TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself. // Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage. while (u8Array[endPtr]) ++endPtr; if (endPtr - idx > 16 && u8Array.subarray && UTF8Decoder) { return UTF8Decoder.decode(u8Array.subarray(idx, endPtr)); } else { var u0, u1, u2, u3, u4, u5; var str = ''; while (1) { // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629 u0 = u8Array[idx++]; if (!u0) return str; if (!(u0 & 0x80)) { str += String.fromCharCode(u0); continue; } u1 = u8Array[idx++] & 63; if ((u0 & 0xE0) == 0xC0) { str += String.fromCharCode(((u0 & 31) << 6) | u1); continue; } u2 = u8Array[idx++] & 63; if ((u0 & 0xF0) == 0xE0) { u0 = ((u0 & 15) << 12) | (u1 << 6) | u2; } else { u3 = u8Array[idx++] & 63; if ((u0 & 0xF8) == 0xF0) { u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | u3; } else { u4 = u8Array[idx++] & 63; if ((u0 & 0xFC) == 0xF8) { u0 = ((u0 & 3) << 24) | (u1 << 18) | (u2 << 12) | (u3 << 6) | u4; } else { u5 = u8Array[idx++] & 63; u0 = ((u0 & 1) << 30) | (u1 << 24) | (u2 << 18) | (u3 << 12) | (u4 << 6) | u5; } } } if (u0 < 0x10000) { str += String.fromCharCode(u0); } else { var ch = u0 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } } } } // Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function UTF8ToString(ptr) { return UTF8ArrayToString(HEAPU8,ptr); } // Copies the given Javascript String object 'str' to the given byte array at address 'outIdx', // encoded in UTF8 form and null-terminated. The copy will require at most str.length*4+1 bytes of space in the HEAP. // Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outU8Array: the array to copy to. Each index in this array is assumed to be one 8-byte element. // outIdx: The starting offset in the array to begin the copying. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=1, only the null terminator will be written and nothing else. // maxBytesToWrite=0 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF8Array(str, outU8Array, outIdx, maxBytesToWrite) { if (!(maxBytesToWrite > 0)) // Parameter maxBytesToWrite is not optional. Negative values, 0, null, undefined and false each don't write out any bytes. return 0; var startIdx = outIdx; var endIdx = outIdx + maxBytesToWrite - 1; // -1 for string null terminator. for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF); if (u <= 0x7F) { if (outIdx >= endIdx) break; outU8Array[outIdx++] = u; } else if (u <= 0x7FF) { if (outIdx + 1 >= endIdx) break; outU8Array[outIdx++] = 0xC0 | (u >> 6); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0xFFFF) { if (outIdx + 2 >= endIdx) break; outU8Array[outIdx++] = 0xE0 | (u >> 12); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0x1FFFFF) { if (outIdx + 3 >= endIdx) break; outU8Array[outIdx++] = 0xF0 | (u >> 18); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0x3FFFFFF) { if (outIdx + 4 >= endIdx) break; outU8Array[outIdx++] = 0xF8 | (u >> 24); outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else { if (outIdx + 5 >= endIdx) break; outU8Array[outIdx++] = 0xFC | (u >> 30); outU8Array[outIdx++] = 0x80 | ((u >> 24) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } } // Null-terminate the pointer to the buffer. outU8Array[outIdx] = 0; return outIdx - startIdx; } // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF8 form. The copy will require at most str.length*4+1 bytes of space in the HEAP. // Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF8(str, outPtr, maxBytesToWrite) { return stringToUTF8Array(str, HEAPU8,outPtr, maxBytesToWrite); } // Returns the number of bytes the given Javascript string takes if encoded as a UTF8 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF8(str) { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF); if (u <= 0x7F) { ++len; } else if (u <= 0x7FF) { len += 2; } else if (u <= 0xFFFF) { len += 3; } else if (u <= 0x1FFFFF) { len += 4; } else if (u <= 0x3FFFFFF) { len += 5; } else { len += 6; } } return len; } // Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. var UTF16Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-16le') : undefined; function UTF16ToString(ptr) { var endPtr = ptr; // TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself. // Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage. var idx = endPtr >> 1; while (HEAP16[idx]) ++idx; endPtr = idx << 1; if (endPtr - ptr > 32 && UTF16Decoder) { return UTF16Decoder.decode(HEAPU8.subarray(ptr, endPtr)); } else { var i = 0; var str = ''; while (1) { var codeUnit = HEAP16[(((ptr)+(i*2))>>1)]; if (codeUnit == 0) return str; ++i; // fromCharCode constructs a character from a UTF-16 code unit, so we can pass the UTF16 string right through. str += String.fromCharCode(codeUnit); } } } // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF16 form. The copy will require at most str.length*4+2 bytes of space in the HEAP. // Use the function lengthBytesUTF16() to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outPtr: Byte address in Emscripten HEAP where to write the string to. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=2, only the null terminator will be written and nothing else. // maxBytesToWrite<2 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF16(str, outPtr, maxBytesToWrite) { // Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed. if (maxBytesToWrite === undefined) { maxBytesToWrite = 0x7FFFFFFF; } if (maxBytesToWrite < 2) return 0; maxBytesToWrite -= 2; // Null terminator. var startPtr = outPtr; var numCharsToWrite = (maxBytesToWrite < str.length*2) ? (maxBytesToWrite / 2) : str.length; for (var i = 0; i < numCharsToWrite; ++i) { // charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP. var codeUnit = str.charCodeAt(i); // possibly a lead surrogate HEAP16[((outPtr)>>1)]=codeUnit; outPtr += 2; } // Null-terminate the pointer to the HEAP. HEAP16[((outPtr)>>1)]=0; return outPtr - startPtr; } // Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF16(str) { return str.length*2; } function UTF32ToString(ptr) { var i = 0; var str = ''; while (1) { var utf32 = HEAP32[(((ptr)+(i*4))>>2)]; if (utf32 == 0) return str; ++i; // Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing. // See http://unicode.org/faq/utf_bom.html#utf16-3 if (utf32 >= 0x10000) { var ch = utf32 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } else { str += String.fromCharCode(utf32); } } } // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF32 form. The copy will require at most str.length*4+4 bytes of space in the HEAP. // Use the function lengthBytesUTF32() to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outPtr: Byte address in Emscripten HEAP where to write the string to. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=4, only the null terminator will be written and nothing else. // maxBytesToWrite<4 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF32(str, outPtr, maxBytesToWrite) { // Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed. if (maxBytesToWrite === undefined) { maxBytesToWrite = 0x7FFFFFFF; } if (maxBytesToWrite < 4) return 0; var startPtr = outPtr; var endPtr = startPtr + maxBytesToWrite - 4; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. // See http://unicode.org/faq/utf_bom.html#utf16-3 var codeUnit = str.charCodeAt(i); // possibly a lead surrogate if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) { var trailSurrogate = str.charCodeAt(++i); codeUnit = 0x10000 + ((codeUnit & 0x3FF) << 10) | (trailSurrogate & 0x3FF); } HEAP32[((outPtr)>>2)]=codeUnit; outPtr += 4; if (outPtr + 4 > endPtr) break; } // Null-terminate the pointer to the HEAP. HEAP32[((outPtr)>>2)]=0; return outPtr - startPtr; } // Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF32(str) { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. // See http://unicode.org/faq/utf_bom.html#utf16-3 var codeUnit = str.charCodeAt(i); if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) ++i; // possibly a lead surrogate, so skip over the tail surrogate. len += 4; } return len; } // Allocate heap space for a JS string, and write it there. // It is the responsibility of the caller to free() that memory. function allocateUTF8(str) { var size = lengthBytesUTF8(str) + 1; var ret = _malloc(size); if (ret) stringToUTF8Array(str, HEAP8, ret, size); return ret; } // Allocate stack space for a JS string, and write it there. function allocateUTF8OnStack(str) { var size = lengthBytesUTF8(str) + 1; var ret = stackAlloc(size); stringToUTF8Array(str, HEAP8, ret, size); return ret; } function demangle(func) { return func; } function demangleAll(text) { var regex = /__Z[\w\d_]+/g; return text.replace(regex, function(x) { var y = demangle(x); return x === y ? x : (x + ' [' + y + ']'); }); } function jsStackTrace() { var err = new Error(); if (!err.stack) { // IE10+ special cases: It does have callstack info, but it is only populated if an Error object is thrown, // so try that as a special-case. try { throw new Error(0); } catch(e) { err = e; } if (!err.stack) { return '(no stack trace available)'; } } return err.stack.toString(); } function stackTrace() { var js = jsStackTrace(); if (Module['extraStackTrace']) js += '\n' + Module['extraStackTrace'](); return demangleAll(js); } // Memory management var PAGE_SIZE = 16384; var WASM_PAGE_SIZE = 65536; var ASMJS_PAGE_SIZE = 16777216; var MIN_TOTAL_MEMORY = 16777216; function alignUp(x, multiple) { if (x % multiple > 0) { x += multiple - (x % multiple); } return x; } var HEAP, /** @type {ArrayBuffer} */ buffer, /** @type {Int8Array} */ HEAP8, /** @type {Uint8Array} */ HEAPU8, /** @type {Int16Array} */ HEAP16, /** @type {Uint16Array} */ HEAPU16, /** @type {Int32Array} */ HEAP32, /** @type {Uint32Array} */ HEAPU32, /** @type {Float32Array} */ HEAPF32, /** @type {Float64Array} */ HEAPF64; function updateGlobalBuffer(buf) { Module['buffer'] = buffer = buf; } function updateGlobalBufferViews() { Module['HEAP8'] = HEAP8 = new Int8Array(buffer); Module['HEAP16'] = HEAP16 = new Int16Array(buffer); Module['HEAP32'] = HEAP32 = new Int32Array(buffer); Module['HEAPU8'] = HEAPU8 = new Uint8Array(buffer); Module['HEAPU16'] = HEAPU16 = new Uint16Array(buffer); Module['HEAPU32'] = HEAPU32 = new Uint32Array(buffer); Module['HEAPF32'] = HEAPF32 = new Float32Array(buffer); Module['HEAPF64'] = HEAPF64 = new Float64Array(buffer); } var STATIC_BASE, STATICTOP, staticSealed; // static area var STACK_BASE, STACKTOP, STACK_MAX; // stack area var DYNAMIC_BASE, DYNAMICTOP_PTR; // dynamic area handled by sbrk STATIC_BASE = STATICTOP = STACK_BASE = STACKTOP = STACK_MAX = DYNAMIC_BASE = DYNAMICTOP_PTR = 0; staticSealed = false; function abortOnCannotGrowMemory() { abort('Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + TOTAL_MEMORY + ', (2) compile with -s ALLOW_MEMORY_GROWTH=1 which allows increasing the size at runtime, or (3) if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 '); } if (!Module['reallocBuffer']) Module['reallocBuffer'] = function(size) { var ret; try { if (ArrayBuffer.transfer) { ret = ArrayBuffer.transfer(buffer, size); } else { var oldHEAP8 = HEAP8; ret = new ArrayBuffer(size); var temp = new Int8Array(ret); temp.set(oldHEAP8); } } catch(e) { return false; } var success = _emscripten_replace_memory(ret); if (!success) return false; return ret; }; function enlargeMemory() { // TOTAL_MEMORY is the current size of the actual array, and DYNAMICTOP is the new top. var PAGE_MULTIPLE = Module["usingWasm"] ? WASM_PAGE_SIZE : ASMJS_PAGE_SIZE; // In wasm, heap size must be a multiple of 64KB. In asm.js, they need to be multiples of 16MB. var LIMIT = 2147483648 - PAGE_MULTIPLE; // We can do one page short of 2GB as theoretical maximum. if (HEAP32[DYNAMICTOP_PTR>>2] > LIMIT) { return false; } var OLD_TOTAL_MEMORY = TOTAL_MEMORY; TOTAL_MEMORY = Math.max(TOTAL_MEMORY, MIN_TOTAL_MEMORY); // So the loop below will not be infinite, and minimum asm.js memory size is 16MB. while (TOTAL_MEMORY < HEAP32[DYNAMICTOP_PTR>>2]) { // Keep incrementing the heap size as long as it's less than what is requested. if (TOTAL_MEMORY <= 536870912) { TOTAL_MEMORY = alignUp(2 * TOTAL_MEMORY, PAGE_MULTIPLE); // Simple heuristic: double until 1GB... } else { // ..., but after that, add smaller increments towards 2GB, which we cannot reach TOTAL_MEMORY = Math.min(alignUp((3 * TOTAL_MEMORY + 2147483648) / 4, PAGE_MULTIPLE), LIMIT); } } var replacement = Module['reallocBuffer'](TOTAL_MEMORY); if (!replacement || replacement.byteLength != TOTAL_MEMORY) { // restore the state to before this call, we failed TOTAL_MEMORY = OLD_TOTAL_MEMORY; return false; } // everything worked updateGlobalBuffer(replacement); updateGlobalBufferViews(); return true; } var byteLength; try { byteLength = Function.prototype.call.bind(Object.getOwnPropertyDescriptor(ArrayBuffer.prototype, 'byteLength').get); byteLength(new ArrayBuffer(4)); // can fail on older ie } catch(e) { // can fail on older node/v8 byteLength = function(buffer) { return buffer.byteLength; }; } var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880; var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216; if (TOTAL_MEMORY < TOTAL_STACK) Module.printErr('TOTAL_MEMORY should be larger than TOTAL_STACK, was ' + TOTAL_MEMORY + '! (TOTAL_STACK=' + TOTAL_STACK + ')'); // Initialize the runtime's memory // Use a provided buffer, if there is one, or else allocate a new one if (Module['buffer']) { buffer = Module['buffer']; } else { // Use a WebAssembly memory where available if (typeof WebAssembly === 'object' && typeof WebAssembly.Memory === 'function') { Module['wasmMemory'] = new WebAssembly.Memory({ 'initial': TOTAL_MEMORY / WASM_PAGE_SIZE }); buffer = Module['wasmMemory'].buffer; } else { buffer = new ArrayBuffer(TOTAL_MEMORY); } Module['buffer'] = buffer; } updateGlobalBufferViews(); function getTotalMemory() { return TOTAL_MEMORY; } // Endianness check (note: assumes compiler arch was little-endian) HEAP32[0] = 0x63736d65; /* 'emsc' */ HEAP16[1] = 0x6373; if (HEAPU8[2] !== 0x73 || HEAPU8[3] !== 0x63) throw 'Runtime error: expected the system to be little-endian!'; function callRuntimeCallbacks(callbacks) { while(callbacks.length > 0) { var callback = callbacks.shift(); if (typeof callback == 'function') { callback(); continue; } var func = callback.func; if (typeof func === 'number') { if (callback.arg === undefined) { Module['dynCall_v'](func); } else { Module['dynCall_vi'](func, callback.arg); } } else { func(callback.arg === undefined ? null : callback.arg); } } } var __ATPRERUN__ = []; // functions called before the runtime is initialized var __ATINIT__ = []; // functions called during startup var __ATMAIN__ = []; // functions called when main() is to be run var __ATEXIT__ = []; // functions called during shutdown var __ATPOSTRUN__ = []; // functions called after the main() is called var runtimeInitialized = false; var runtimeExited = false; function preRun() { // compatibility - merge in anything from Module['preRun'] at this time if (Module['preRun']) { if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']]; while (Module['preRun'].length) { addOnPreRun(Module['preRun'].shift()); } } callRuntimeCallbacks(__ATPRERUN__); } function ensureInitRuntime() { if (runtimeInitialized) return; runtimeInitialized = true; callRuntimeCallbacks(__ATINIT__); } function preMain() { callRuntimeCallbacks(__ATMAIN__); } function exitRuntime() { callRuntimeCallbacks(__ATEXIT__); runtimeExited = true; } function postRun() { // compatibility - merge in anything from Module['postRun'] at this time if (Module['postRun']) { if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']]; while (Module['postRun'].length) { addOnPostRun(Module['postRun'].shift()); } } callRuntimeCallbacks(__ATPOSTRUN__); } function addOnPreRun(cb) { __ATPRERUN__.unshift(cb); } function addOnInit(cb) { __ATINIT__.unshift(cb); } function addOnPreMain(cb) { __ATMAIN__.unshift(cb); } function addOnExit(cb) { __ATEXIT__.unshift(cb); } function addOnPostRun(cb) { __ATPOSTRUN__.unshift(cb); } // Deprecated: This function should not be called because it is unsafe and does not provide // a maximum length limit of how many bytes it is allowed to write. Prefer calling the // function stringToUTF8Array() instead, which takes in a maximum length that can be used // to be secure from out of bounds writes. /** @deprecated */ function writeStringToMemory(string, buffer, dontAddNull) { warnOnce('writeStringToMemory is deprecated and should not be called! Use stringToUTF8() instead!'); var /** @type {number} */ lastChar, /** @type {number} */ end; if (dontAddNull) { // stringToUTF8Array always appends null. If we don't want to do that, remember the // character that existed at the location where the null will be placed, and restore // that after the write (below). end = buffer + lengthBytesUTF8(string); lastChar = HEAP8[end]; } stringToUTF8(string, buffer, Infinity); if (dontAddNull) HEAP8[end] = lastChar; // Restore the value under the null character. } function writeArrayToMemory(array, buffer) { HEAP8.set(array, buffer); } function writeAsciiToMemory(str, buffer, dontAddNull) { for (var i = 0; i < str.length; ++i) { HEAP8[((buffer++)>>0)]=str.charCodeAt(i); } // Null-terminate the pointer to the HEAP. if (!dontAddNull) HEAP8[((buffer)>>0)]=0; } function unSign(value, bits, ignore) { if (value >= 0) { return value; } return bits <= 32 ? 2*Math.abs(1 << (bits-1)) + value // Need some trickery, since if bits == 32, we are right at the limit of the bits JS uses in bitshifts : Math.pow(2, bits) + value; } function reSign(value, bits, ignore) { if (value <= 0) { return value; } var half = bits <= 32 ? Math.abs(1 << (bits-1)) // abs is needed if bits == 32 : Math.pow(2, bits-1); if (value >= half && (bits <= 32 || value > half)) { // for huge values, we can hit the precision limit and always get true here. so don't do that // but, in general there is no perfect solution here. With 64-bit ints, we get rounding and errors // TODO: In i64 mode 1, resign the two parts separately and safely value = -2*half + value; // Cannot bitshift half, as it may be at the limit of the bits JS uses in bitshifts } return value; } var Math_abs = Math.abs; var Math_cos = Math.cos; var Math_sin = Math.sin; var Math_tan = Math.tan; var Math_acos = Math.acos; var Math_asin = Math.asin; var Math_atan = Math.atan; var Math_atan2 = Math.atan2; var Math_exp = Math.exp; var Math_log = Math.log; var Math_sqrt = Math.sqrt; var Math_ceil = Math.ceil; var Math_floor = Math.floor; var Math_pow = Math.pow; var Math_imul = Math.imul; var Math_fround = Math.fround; var Math_round = Math.round; var Math_min = Math.min; var Math_max = Math.max; var Math_clz32 = Math.clz32; var Math_trunc = Math.trunc; // A counter of dependencies for calling run(). If we need to // do asynchronous work before running, increment this and // decrement it. Incrementing must happen in a place like // PRE_RUN_ADDITIONS (used by emcc to add file preloading). // Note that you can add dependencies in preRun, even though // it happens right before run - run will be postponed until // the dependencies are met. var runDependencies = 0; var runDependencyWatcher = null; var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled function getUniqueRunDependency(id) { return id; } function addRunDependency(id) { runDependencies++; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } } function removeRunDependency(id) { runDependencies--; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } if (runDependencies == 0) { if (runDependencyWatcher !== null) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; } if (dependenciesFulfilled) { var callback = dependenciesFulfilled; dependenciesFulfilled = null; callback(); // can add another dependenciesFulfilled } } } Module["preloadedImages"] = {}; // maps url to image data Module["preloadedAudios"] = {}; // maps url to audio data var memoryInitializer = null; // Prefix of data URIs emitted by SINGLE_FILE and related options. var dataURIPrefix = 'data:application/octet-stream;base64,'; // Indicates whether filename is a base64 data URI. function isDataURI(filename) { return String.prototype.startsWith ? filename.startsWith(dataURIPrefix) : filename.indexOf(dataURIPrefix) === 0; } function integrateWasmJS() { // wasm.js has several methods for creating the compiled code module here: // * 'native-wasm' : use native WebAssembly support in the browser // * 'interpret-s-expr': load s-expression code from a .wast and interpret // * 'interpret-binary': load binary wasm and interpret // * 'interpret-asm2wasm': load asm.js code, translate to wasm, and interpret // * 'asmjs': no wasm, just load the asm.js code and use that (good for testing) // The method is set at compile time (BINARYEN_METHOD) // The method can be a comma-separated list, in which case, we will try the // options one by one. Some of them can fail gracefully, and then we can try // the next. // inputs var method = 'native-wasm'; var wasmTextFile = 'stbvorbis.wast'; var wasmBinaryFile = 'stbvorbis.wasm'; var asmjsCodeFile = 'stbvorbis.temp.asm.js'; if (typeof Module['locateFile'] === 'function') { if (!isDataURI(wasmTextFile)) { wasmTextFile = Module['locateFile'](wasmTextFile); } if (!isDataURI(wasmBinaryFile)) { wasmBinaryFile = Module['locateFile'](wasmBinaryFile); } if (!isDataURI(asmjsCodeFile)) { asmjsCodeFile = Module['locateFile'](asmjsCodeFile); } } // utilities var wasmPageSize = 64*1024; var info = { 'global': null, 'env': null, 'asm2wasm': asm2wasmImports, 'parent': Module // Module inside wasm-js.cpp refers to wasm-js.cpp; this allows access to the outside program. }; var exports = null; function mergeMemory(newBuffer) { // The wasm instance creates its memory. But static init code might have written to // buffer already, including the mem init file, and we must copy it over in a proper merge. // TODO: avoid this copy, by avoiding such static init writes // TODO: in shorter term, just copy up to the last static init write var oldBuffer = Module['buffer']; if (newBuffer.byteLength < oldBuffer.byteLength) { Module['printErr']('the new buffer in mergeMemory is smaller than the previous one. in native wasm, we should grow memory here'); } var oldView = new Int8Array(oldBuffer); var newView = new Int8Array(newBuffer); newView.set(oldView); updateGlobalBuffer(newBuffer); updateGlobalBufferViews(); } function fixImports(imports) { return imports; } function getBinary() { try { if (Module['wasmBinary']) { return new Uint8Array(Module['wasmBinary']); } if (Module['readBinary']) { return Module['readBinary'](wasmBinaryFile); } else { throw "on the web, we need the wasm binary to be preloaded and set on Module['wasmBinary']. emcc.py will do that for you when generating HTML (but not JS)"; } } catch (err) { abort(err); } } function getBinaryPromise() { // if we don't have the binary yet, and have the Fetch api, use that // in some environments, like Electron's render process, Fetch api may be present, but have a different context than expected, let's only use it on the Web if (!Module['wasmBinary'] && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) && typeof fetch === 'function') { return fetch(wasmBinaryFile, { credentials: 'same-origin' }).then(function(response) { if (!response['ok']) { throw "failed to load wasm binary file at '" + wasmBinaryFile + "'"; } return response['arrayBuffer'](); }).catch(function () { return getBinary(); }); } // Otherwise, getBinary should be able to get it synchronously return new Promise(function(resolve, reject) { resolve(getBinary()); }); } // do-method functions function doNativeWasm(global, env, providedBuffer) { if (typeof WebAssembly !== 'object') { Module['printErr']('no native wasm support detected'); return false; } // prepare memory import if (!(Module['wasmMemory'] instanceof WebAssembly.Memory)) { Module['printErr']('no native wasm Memory in use'); return false; } env['memory'] = Module['wasmMemory']; // Load the wasm module and create an instance of using native support in the JS engine. info['global'] = { 'NaN': NaN, 'Infinity': Infinity }; info['global.Math'] = Math; info['env'] = env; // handle a generated wasm instance, receiving its exports and // performing other necessary setup function receiveInstance(instance, module) { exports = instance.exports; if (exports.memory) mergeMemory(exports.memory); Module['asm'] = exports; Module["usingWasm"] = true; removeRunDependency('wasm-instantiate'); } addRunDependency('wasm-instantiate'); // User shell pages can write their own Module.instantiateWasm = function(imports, successCallback) callback // to manually instantiate the Wasm module themselves. This allows pages to run the instantiation parallel // to any other async startup actions they are performing. if (Module['instantiateWasm']) { try { return Module['instantiateWasm'](info, receiveInstance); } catch(e) { Module['printErr']('Module.instantiateWasm callback failed with error: ' + e); return false; } } function receiveInstantiatedSource(output) { // 'output' is a WebAssemblyInstantiatedSource object which has both the module and instance. // receiveInstance() will swap in the exports (to Module.asm) so they can be called receiveInstance(output['instance'], output['module']); } function instantiateArrayBuffer(receiver) { getBinaryPromise().then(function(binary) { return WebAssembly.instantiate(binary, info); }).then(receiver).catch(function(reason) { Module['printErr']('failed to asynchronously prepare wasm: ' + reason); abort(reason); }); } // Prefer streaming instantiation if available. if (!Module['wasmBinary'] && typeof WebAssembly.instantiateStreaming === 'function' && !isDataURI(wasmBinaryFile) && typeof fetch === 'function') { WebAssembly.instantiateStreaming(fetch(wasmBinaryFile, { credentials: 'same-origin' }), info) .then(receiveInstantiatedSource) .catch(function(reason) { // We expect the most common failure cause to be a bad MIME type for the binary, // in which case falling back to ArrayBuffer instantiation should work. Module['printErr']('wasm streaming compile failed: ' + reason); Module['printErr']('falling back to ArrayBuffer instantiation'); instantiateArrayBuffer(receiveInstantiatedSource); }); } else { instantiateArrayBuffer(receiveInstantiatedSource); } return {}; // no exports yet; we'll fill them in later } // We may have a preloaded value in Module.asm, save it Module['asmPreload'] = Module['asm']; // Memory growth integration code var asmjsReallocBuffer = Module['reallocBuffer']; var wasmReallocBuffer = function(size) { var PAGE_MULTIPLE = Module["usingWasm"] ? WASM_PAGE_SIZE : ASMJS_PAGE_SIZE; // In wasm, heap size must be a multiple of 64KB. In asm.js, they need to be multiples of 16MB. size = alignUp(size, PAGE_MULTIPLE); // round up to wasm page size var old = Module['buffer']; var oldSize = old.byteLength; if (Module["usingWasm"]) { // native wasm support try { var result = Module['wasmMemory'].grow((size - oldSize) / wasmPageSize); // .grow() takes a delta compared to the previous size if (result !== (-1 | 0)) { // success in native wasm memory growth, get the buffer from the memory return Module['buffer'] = Module['wasmMemory'].buffer; } else { return null; } } catch(e) { return null; } } }; Module['reallocBuffer'] = function(size) { if (finalMethod === 'asmjs') { return asmjsReallocBuffer(size); } else { return wasmReallocBuffer(size); } }; // we may try more than one; this is the final one, that worked and we are using var finalMethod = ''; // Provide an "asm.js function" for the application, called to "link" the asm.js module. We instantiate // the wasm module at that time, and it receives imports and provides exports and so forth, the app // doesn't need to care that it is wasm or olyfilled wasm or asm.js. Module['asm'] = function(global, env, providedBuffer) { env = fixImports(env); // import table if (!env['table']) { var TABLE_SIZE = Module['wasmTableSize']; if (TABLE_SIZE === undefined) TABLE_SIZE = 1024; // works in binaryen interpreter at least var MAX_TABLE_SIZE = Module['wasmMaxTableSize']; if (typeof WebAssembly === 'object' && typeof WebAssembly.Table === 'function') { if (MAX_TABLE_SIZE !== undefined) { env['table'] = new WebAssembly.Table({ 'initial': TABLE_SIZE, 'maximum': MAX_TABLE_SIZE, 'element': 'anyfunc' }); } else { env['table'] = new WebAssembly.Table({ 'initial': TABLE_SIZE, element: 'anyfunc' }); } } else { env['table'] = new Array(TABLE_SIZE); // works in binaryen interpreter at least } Module['wasmTable'] = env['table']; } if (!env['memoryBase']) { env['memoryBase'] = Module['STATIC_BASE']; // tell the memory segments where to place themselves } if (!env['tableBase']) { env['tableBase'] = 0; // table starts at 0 by default, in dynamic linking this will change } // try the methods. each should return the exports if it succeeded var exports; exports = doNativeWasm(global, env, providedBuffer); assert(exports, 'no binaryen method succeeded.'); return exports; }; var methodHandler = Module['asm']; // note our method handler, as we may modify Module['asm'] later } integrateWasmJS(); // === Body === var ASM_CONSTS = []; STATIC_BASE = GLOBAL_BASE; STATICTOP = STATIC_BASE + 3776; /* global initializers */ __ATINIT__.push(); var STATIC_BUMP = 3776; Module["STATIC_BASE"] = STATIC_BASE; Module["STATIC_BUMP"] = STATIC_BUMP; /* no memory initializer */ var tempDoublePtr = STATICTOP; STATICTOP += 16; function copyTempFloat(ptr) { // functions, because inlining this code increases code size too much HEAP8[tempDoublePtr] = HEAP8[ptr]; HEAP8[tempDoublePtr+1] = HEAP8[ptr+1]; HEAP8[tempDoublePtr+2] = HEAP8[ptr+2]; HEAP8[tempDoublePtr+3] = HEAP8[ptr+3]; } function copyTempDouble(ptr) { HEAP8[tempDoublePtr] = HEAP8[ptr]; HEAP8[tempDoublePtr+1] = HEAP8[ptr+1]; HEAP8[tempDoublePtr+2] = HEAP8[ptr+2]; HEAP8[tempDoublePtr+3] = HEAP8[ptr+3]; HEAP8[tempDoublePtr+4] = HEAP8[ptr+4]; HEAP8[tempDoublePtr+5] = HEAP8[ptr+5]; HEAP8[tempDoublePtr+6] = HEAP8[ptr+6]; HEAP8[tempDoublePtr+7] = HEAP8[ptr+7]; } // {{PRE_LIBRARY}} function ___assert_fail(condition, filename, line, func) { abort('Assertion failed: ' + Pointer_stringify(condition) + ', at: ' + [filename ? Pointer_stringify(filename) : 'unknown filename', line, func ? Pointer_stringify(func) : 'unknown function']); } function _abort() { Module['abort'](); } var _llvm_floor_f64=Math_floor; function _emscripten_memcpy_big(dest, src, num) { HEAPU8.set(HEAPU8.subarray(src, src+num), dest); return dest; } function ___setErrNo(value) { if (Module['___errno_location']) HEAP32[((Module['___errno_location']())>>2)]=value; return value; } DYNAMICTOP_PTR = staticAlloc(4); STACK_BASE = STACKTOP = alignMemory(STATICTOP); STACK_MAX = STACK_BASE + TOTAL_STACK; DYNAMIC_BASE = alignMemory(STACK_MAX); HEAP32[DYNAMICTOP_PTR>>2] = DYNAMIC_BASE; staticSealed = true; // seal the static portion of memory var ASSERTIONS = false; /** @type {function(string, boolean=, number=)} */ function intArrayFromString(stringy, dontAddNull, length) { var len = length > 0 ? length : lengthBytesUTF8(stringy)+1; var u8array = new Array(len); var numBytesWritten = stringToUTF8Array(stringy, u8array, 0, u8array.length); if (dontAddNull) u8array.length = numBytesWritten; return u8array; } function intArrayToString(array) { var ret = []; for (var i = 0; i < array.length; i++) { var chr = array[i]; if (chr > 0xFF) { if (ASSERTIONS) { assert(false, 'Character code ' + chr + ' (' + String.fromCharCode(chr) + ') at offset ' + i + ' not in 0x00-0xFF.'); } chr &= 0xFF; } ret.push(String.fromCharCode(chr)); } return ret.join(''); } Module['wasmTableSize'] = 4; Module['wasmMaxTableSize'] = 4; function invoke_iii(index,a1,a2) { try { return Module["dynCall_iii"](index,a1,a2); } catch(e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } Module.asmGlobalArg = {}; Module.asmLibraryArg = { "abort": abort, "assert": assert, "enlargeMemory": enlargeMemory, "getTotalMemory": getTotalMemory, "abortOnCannotGrowMemory": abortOnCannotGrowMemory, "invoke_iii": invoke_iii, "___assert_fail": ___assert_fail, "___setErrNo": ___setErrNo, "_abort": _abort, "_emscripten_memcpy_big": _emscripten_memcpy_big, "_llvm_floor_f64": _llvm_floor_f64, "DYNAMICTOP_PTR": DYNAMICTOP_PTR, "tempDoublePtr": tempDoublePtr, "ABORT": ABORT, "STACKTOP": STACKTOP, "STACK_MAX": STACK_MAX }; // EMSCRIPTEN_START_ASM var asm =Module["asm"]// EMSCRIPTEN_END_ASM (Module.asmGlobalArg, Module.asmLibraryArg, buffer); Module["asm"] = asm; var ___errno_location = Module["___errno_location"] = function() { return Module["asm"]["___errno_location"].apply(null, arguments) }; var _emscripten_replace_memory = Module["_emscripten_replace_memory"] = function() { return Module["asm"]["_emscripten_replace_memory"].apply(null, arguments) }; var _free = Module["_free"] = function() { return Module["asm"]["_free"].apply(null, arguments) }; var _malloc = Module["_malloc"] = function() { return Module["asm"]["_malloc"].apply(null, arguments) }; var _memcpy = Module["_memcpy"] = function() { return Module["asm"]["_memcpy"].apply(null, arguments) }; var _memset = Module["_memset"] = function() { return Module["asm"]["_memset"].apply(null, arguments) }; var _sbrk = Module["_sbrk"] = function() { return Module["asm"]["_sbrk"].apply(null, arguments) }; var _stb_vorbis_decode_memory_float = Module["_stb_vorbis_decode_memory_float"] = function() { return Module["asm"]["_stb_vorbis_decode_memory_float"].apply(null, arguments) }; var establishStackSpace = Module["establishStackSpace"] = function() { return Module["asm"]["establishStackSpace"].apply(null, arguments) }; var getTempRet0 = Module["getTempRet0"] = function() { return Module["asm"]["getTempRet0"].apply(null, arguments) }; var runPostSets = Module["runPostSets"] = function() { return Module["asm"]["runPostSets"].apply(null, arguments) }; var setTempRet0 = Module["setTempRet0"] = function() { return Module["asm"]["setTempRet0"].apply(null, arguments) }; var setThrew = Module["setThrew"] = function() { return Module["asm"]["setThrew"].apply(null, arguments) }; var stackAlloc = Module["stackAlloc"] = function() { return Module["asm"]["stackAlloc"].apply(null, arguments) }; var stackRestore = Module["stackRestore"] = function() { return Module["asm"]["stackRestore"].apply(null, arguments) }; var stackSave = Module["stackSave"] = function() { return Module["asm"]["stackSave"].apply(null, arguments) }; var dynCall_iii = Module["dynCall_iii"] = function() { return Module["asm"]["dynCall_iii"].apply(null, arguments) }; ; // === Auto-generated postamble setup entry stuff === Module['asm'] = asm; Module["ccall"] = ccall; Module["cwrap"] = cwrap; /** * @constructor * @extends {Error} * @this {ExitStatus} */ function ExitStatus(status) { this.name = "ExitStatus"; this.message = "Program terminated with exit(" + status + ")"; this.status = status; }; ExitStatus.prototype = new Error(); ExitStatus.prototype.constructor = ExitStatus; var initialStackTop; var calledMain = false; dependenciesFulfilled = function runCaller() { // If run has never been called, and we should call run (INVOKE_RUN is true, and Module.noInitialRun is not false) if (!Module['calledRun']) run(); if (!Module['calledRun']) dependenciesFulfilled = runCaller; // try this again later, after new deps are fulfilled } /** @type {function(Array=)} */ function run(args) { args = args || Module['arguments']; if (runDependencies > 0) { return; } preRun(); if (runDependencies > 0) return; // a preRun added a dependency, run will be called later if (Module['calledRun']) return; // run may have just been called through dependencies being fulfilled just in this very frame function doRun() { if (Module['calledRun']) return; // run may have just been called while the async setStatus time below was happening Module['calledRun'] = true; if (ABORT) return; ensureInitRuntime(); preMain(); if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized'](); postRun(); } if (Module['setStatus']) { Module['setStatus']('Running...'); setTimeout(function() { setTimeout(function() { Module['setStatus'](''); }, 1); doRun(); }, 1); } else { doRun(); } } Module['run'] = run; function exit(status, implicit) { // if this is just main exit-ing implicitly, and the status is 0, then we // don't need to do anything here and can just leave. if the status is // non-zero, though, then we need to report it. // (we may have warned about this earlier, if a situation justifies doing so) if (implicit && Module['noExitRuntime'] && status === 0) { return; } if (Module['noExitRuntime']) { } else { ABORT = true; EXITSTATUS = status; STACKTOP = initialStackTop; exitRuntime(); if (Module['onExit']) Module['onExit'](status); } if (ENVIRONMENT_IS_NODE) { process['exit'](status); } Module['quit'](status, new ExitStatus(status)); } Module['exit'] = exit; var abortDecorators = []; function abort(what) { if (Module['onAbort']) { Module['onAbort'](what); } if (what !== undefined) { Module.print(what); Module.printErr(what); what = JSON.stringify(what) } else { what = ''; } ABORT = true; EXITSTATUS = 1; throw 'abort(' + what + '). Build with -s ASSERTIONS=1 for more info.'; } Module['abort'] = abort; // {{PRE_RUN_ADDITIONS}} if (Module['preInit']) { if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']]; while (Module['preInit'].length > 0) { Module['preInit'].pop()(); } } Module["noExitRuntime"] = true; run(); // {{POST_RUN_ADDITIONS}} // {{MODULE_ADDITIONS}}