// Copyright 2018 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package mipmap import ( "fmt" "image" "math" "github.com/hajimehoshi/ebiten/v2/internal/atlas" "github.com/hajimehoshi/ebiten/v2/internal/buffered" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" "github.com/hajimehoshi/ebiten/v2/internal/restorable" ) func canUseMipmap(imageType atlas.ImageType) bool { switch imageType { case atlas.ImageTypeRegular, atlas.ImageTypeUnmanaged: return true } return false } // Mipmap is a set of buffered.Image sorted by the order of mipmap level. // The level 0 image is a regular image and higher-level images are used for mipmap. type Mipmap struct { width int height int imageType atlas.ImageType orig *buffered.Image imgs map[int]imageWithDirtyFlag } type imageWithDirtyFlag struct { img *buffered.Image dirty bool } func New(width, height int, imageType atlas.ImageType) *Mipmap { return &Mipmap{ width: width, height: height, orig: buffered.NewImage(width, height, imageType), imageType: imageType, } } func (m *Mipmap) DumpScreenshot(graphicsDriver graphicsdriver.Graphics, name string, blackbg bool) (string, error) { return m.orig.DumpScreenshot(graphicsDriver, name, blackbg) } func (m *Mipmap) WritePixels(pix []byte, region image.Rectangle) { m.orig.WritePixels(pix, region) m.markDirty() } func (m *Mipmap) markDirty() { for i, img := range m.imgs { img.dirty = true m.imgs[i] = img } } func (m *Mipmap) ReadPixels(graphicsDriver graphicsdriver.Graphics, pixels []byte, region image.Rectangle) (ok bool, err error) { return m.orig.ReadPixels(graphicsDriver, pixels, region) } func (m *Mipmap) DrawTriangles(srcs [graphics.ShaderSrcImageCount]*Mipmap, vertices []float32, indices []uint32, blend graphicsdriver.Blend, dstRegion image.Rectangle, srcRegions [graphics.ShaderSrcImageCount]image.Rectangle, shader *atlas.Shader, uniforms []uint32, fillRule graphicsdriver.FillRule, canSkipMipmap bool, hint restorable.Hint) { if len(indices) == 0 { return } level := 0 if !canSkipMipmap && srcs[0] != nil && canUseMipmap(srcs[0].imageType) { level = math.MaxInt32 for i := 0; i < len(indices); i += 3 { idx0 := indices[i] idx1 := indices[i+1] idx2 := indices[i+2] dx0 := vertices[graphics.VertexFloatCount*idx0] dy0 := vertices[graphics.VertexFloatCount*idx0+1] sx0 := vertices[graphics.VertexFloatCount*idx0+2] sy0 := vertices[graphics.VertexFloatCount*idx0+3] dx1 := vertices[graphics.VertexFloatCount*idx1] dy1 := vertices[graphics.VertexFloatCount*idx1+1] sx1 := vertices[graphics.VertexFloatCount*idx1+2] sy1 := vertices[graphics.VertexFloatCount*idx1+3] dx2 := vertices[graphics.VertexFloatCount*idx2] dy2 := vertices[graphics.VertexFloatCount*idx2+1] sx2 := vertices[graphics.VertexFloatCount*idx2+2] sy2 := vertices[graphics.VertexFloatCount*idx2+3] if l := mipmapLevelFromDistance(dx0, dy0, dx1, dy1, sx0, sy0, sx1, sy1); level > l { level = l } if l := mipmapLevelFromDistance(dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2); level > l { level = l } if l := mipmapLevelFromDistance(dx2, dy2, dx0, dy0, sx2, sy2, sx0, sy0); level > l { level = l } } if level == math.MaxInt32 { panic("mipmap: level must be calculated at least once but not") } } var imgs [graphics.ShaderSrcImageCount]*buffered.Image for i, src := range srcs { if src == nil { continue } if level != 0 { if img := src.level(level); img != nil { s := float32(pow2(level)) for i := 0; i < len(vertices); i += graphics.VertexFloatCount { vertices[i+2] /= s vertices[i+3] /= s } imgs[i] = img continue } } imgs[i] = src.orig } m.orig.DrawTriangles(imgs, vertices, indices, blend, dstRegion, srcRegions, shader, uniforms, fillRule, hint) m.markDirty() } func (m *Mipmap) setImg(level int, img *buffered.Image) { if m.imgs == nil { m.imgs = map[int]imageWithDirtyFlag{} } m.imgs[level] = imageWithDirtyFlag{ img: img, dirty: false, } } func (m *Mipmap) level(level int) *buffered.Image { if level == 0 { panic("mipmap: level must be non-zero at level") } if !canUseMipmap(m.imageType) { panic("mipmap: mipmap images for a screen image is not implemented yet") } img, ok := m.imgs[level] if ok && !img.dirty { return img.img } var w, h int var src *buffered.Image vs := make([]float32, 4*graphics.VertexFloatCount) switch { case level == 1: src = m.orig w = m.width h = m.height case level > 1: src = m.level(level - 1) if src == nil { m.setImg(level, nil) return nil } w = sizeForLevel(m.width, level-1) h = sizeForLevel(m.height, level-1) default: panic(fmt.Sprintf("mipmap: invalid level: %d", level)) } graphics.QuadVerticesFromSrcAndMatrix(vs, 0, 0, float32(w), float32(h), 0.5, 0, 0, 0.5, 0, 0, 1, 1, 1, 1) is := graphics.QuadIndices() w2 := sizeForLevel(m.width, level) h2 := sizeForLevel(m.height, level) if w2 == 0 || h2 == 0 { m.setImg(level, nil) return nil } // buffered.NewImage panics with a too big size when actual allocation happens. // 4096 should be a safe size in most environments (#1399). // Unfortunately a precise max image size cannot be obtained here since this requires GPU access. if w2 > 4096 || h2 > 4096 { m.setImg(level, nil) return nil } var s *buffered.Image if img.img != nil { // As s is overwritten, this doesn't have to be cleared. s = img.img } else { s = buffered.NewImage(w2, h2, m.imageType) } dstRegion := image.Rect(0, 0, w2, h2) srcRegion := image.Rect(0, 0, w, h) s.DrawTriangles([graphics.ShaderSrcImageCount]*buffered.Image{src}, vs, is, graphicsdriver.BlendCopy, dstRegion, [graphics.ShaderSrcImageCount]image.Rectangle{srcRegion}, atlas.LinearFilterShader, nil, graphicsdriver.FillRuleFillAll, restorable.HintOverwriteDstRegion) m.setImg(level, s) return m.imgs[level].img } func sizeForLevel(x int, level int) int { for i := 0; i < level; i++ { x /= 2 if x == 0 { return 0 } } return x } func (m *Mipmap) Deallocate() { for _, img := range m.imgs { if img.img == nil { continue } img.img.Deallocate() } for k := range m.imgs { delete(m.imgs, k) } m.orig.Deallocate() } // mipmapLevel returns an appropriate mipmap level for the given distance. func mipmapLevelFromDistance(dx0, dy0, dx1, dy1, sx0, sy0, sx1, sy1 float32) int { const maxLevel = 6 d := (dx1-dx0)*(dx1-dx0) + (dy1-dy0)*(dy1-dy0) s := (sx1-sx0)*(sx1-sx0) + (sy1-sy0)*(sy1-sy0) if s == 0 { return 0 } scale := d / s // Scale can be infinite when the specified scale is extremely big (#1398). if math.IsInf(float64(scale), 0) { return 0 } // Scale can be zero when the specified scale is extremely small (#1398). if scale == 0 { return 0 } level := 0 for scale < 0.25 { level++ scale *= 4 } if level > 0 { // If the image can be scaled into 0 size, adjust the level. (#839) w, h := int(sx1-sx0), int(sy1-sy0) for level >= 0 { s := 1 << uint(level) if (w > 0 && w/s == 0) || (h > 0 && h/s == 0) { level-- continue } break } if level < 0 { // As the render source is too small, nothing is rendered. return 0 } } if level > maxLevel { level = maxLevel } return level } func pow2(power int) float32 { x := 1 return float32(x << uint(power)) }