// Copyright 2015 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package audio provides audio players. // // The stream format must be 16-bit little endian and 2 channels. The format is as follows: // [data] = [sample 1] [sample 2] [sample 3] ... // [sample *] = [channel 1] ... // [channel *] = [byte 1] [byte 2] ... // // An audio context (audio.Context object) has a sample rate you can specify and all streams you want to play must have the same // sample rate. However, decoders in e.g. audio/mp3 package adjust sample rate automatically, // and you don't have to care about it as long as you use those decoders. // // An audio context can generate 'players' (audio.Player objects), // and you can play sound by calling Play function of players. // When multiple players play, mixing is automatically done. // Note that too many players may cause distortion. // // For the simplest example to play sound, see wav package in the examples. package audio import ( "bytes" "errors" "fmt" "io" "runtime" "sync" "time" ) const ( channelNum = 2 bytesPerSample = 2 * channelNum ) // A Context represents a current state of audio. // // At most one Context object can exist in one process. // This means only one constant sample rate is valid in your one application. // // For a typical usage example, see examples/wav/main.go. type Context struct { c context // inited represents whether the audio device is initialized and available or not. // On Android, audio loop cannot be started unless JVM is accessible. After updating one frame, JVM should exist. inited chan struct{} initedOnce sync.Once sampleRate int err error ready bool players map[*playerImpl]struct{} m sync.Mutex semaphore chan struct{} } var ( theContext *Context theContextLock sync.Mutex ) // NewContext creates a new audio context with the given sample rate. // // The sample rate is also used for decoding MP3 with audio/mp3 package // or other formats as the target sample rate. // // sampleRate should be 44100 or 48000. // Other values might not work. // For example, 22050 causes error on Safari when decoding MP3. // // Error returned by NewContext is always nil as of 1.5.0-alpha. // // NewContext panics when an audio context is already created. func NewContext(sampleRate int) (*Context, error) { theContextLock.Lock() defer theContextLock.Unlock() if theContext != nil { panic("audio: context is already created") } c := &Context{ sampleRate: sampleRate, c: newContext(sampleRate), players: map[*playerImpl]struct{}{}, inited: make(chan struct{}), semaphore: make(chan struct{}, 1), } theContext = c h := getHook() h.OnSuspendAudio(func() { c.semaphore <- struct{}{} }) h.OnResumeAudio(func() { <-c.semaphore }) h.AppendHookOnBeforeUpdate(func() error { c.initedOnce.Do(func() { close(c.inited) }) var err error theContextLock.Lock() if theContext != nil { theContext.m.Lock() err = theContext.err theContext.m.Unlock() } theContextLock.Unlock() return err }) return c, nil } // CurrentContext returns the current context or nil if there is no context. func CurrentContext() *Context { theContextLock.Lock() c := theContext theContextLock.Unlock() return c } func (c *Context) hasError() bool { c.m.Lock() r := c.err != nil c.m.Unlock() return r } func (c *Context) setError(err error) { // TODO: What if c.err already exists? c.m.Lock() c.err = err c.m.Unlock() } func (c *Context) setReady() { c.m.Lock() c.ready = true c.m.Unlock() } func (c *Context) addPlayer(p *playerImpl) { c.m.Lock() defer c.m.Unlock() c.players[p] = struct{}{} // Check the source duplication srcs := map[io.ReadCloser]struct{}{} for p := range c.players { if _, ok := srcs[p.src]; ok { c.err = errors.New("audio: a same source is used by multiple Player") return } srcs[p.src] = struct{}{} } } func (c *Context) removePlayer(p *playerImpl) { c.m.Lock() delete(c.players, p) c.m.Unlock() } // IsReady returns a boolean value indicating whether the audio is ready or not. // // On some browsers, user interaction like click or pressing keys is required to start audio. func (c *Context) IsReady() bool { c.m.Lock() defer c.m.Unlock() r := c.ready if r { return r } if len(c.players) != 0 { return r } // Create another goroutine since (*Player).Play can lock the context's mutex. go func() { // The audio context is never ready unless there is a player. This is // problematic when a user tries to play audio after the context is ready. // Play a dummy player to avoid the blocking (#969). // Use a long enough buffer so that writing doesn't finish immediately (#970). p, _ := NewPlayerFromBytes(c, make([]byte, bufferSize()*2)) p.Play() }() return r } // Update is deprecated as of 1.6.0-alpha. // // As of 1.6.0-alpha, Update always returns nil and does nothing related to updating the state. // You don't have to call Update any longer. // The internal audio error is returned at ebiten.Run instead. func (c *Context) Update() error { return nil } // SampleRate returns the sample rate. func (c *Context) SampleRate() int { return c.sampleRate } // ReadSeekCloser is an io.ReadSeeker and io.Closer. type ReadSeekCloser interface { io.ReadSeeker io.Closer } type bytesReadSeekCloser struct { reader *bytes.Reader } func (b *bytesReadSeekCloser) Read(buf []byte) (int, error) { return b.reader.Read(buf) } func (b *bytesReadSeekCloser) Seek(offset int64, whence int) (int64, error) { return b.reader.Seek(offset, whence) } func (b *bytesReadSeekCloser) Close() error { b.reader = nil return nil } // BytesReadSeekCloser creates ReadSeekCloser from bytes. func BytesReadSeekCloser(b []byte) ReadSeekCloser { return &bytesReadSeekCloser{reader: bytes.NewReader(b)} } // Player is an audio player which has one stream. // // Even when all references to a Player object is gone, // the object is not GCed until the player finishes playing. // This means that if a Player plays an infinite stream, // the object is never GCed unless Close is called. type Player struct { p *playerImpl } type playerImpl struct { context *Context src io.ReadCloser sampleRate int playing bool closedExplicitly bool isLoopActive bool buf []byte pos int64 volume float64 m sync.Mutex } // NewPlayer creates a new player with the given stream. // // src's format must be linear PCM (16bits little endian, 2 channel stereo) // without a header (e.g. RIFF header). // The sample rate must be same as that of the audio context. // // The player is seekable when src is io.Seeker. // Attempt to seek the player that is not io.Seeker causes panic. // // Note that the given src can't be shared with other Player objects. // // NewPlayer tries to call Seek of src to get the current position. // NewPlayer returns error when the Seek returns error. // // NewPlayer takes the ownership of src. Player's Close calls src's Close. func NewPlayer(context *Context, src io.ReadCloser) (*Player, error) { p := &Player{ &playerImpl{ context: context, src: src, sampleRate: context.sampleRate, volume: 1, }, } if seeker, ok := p.p.src.(io.Seeker); ok { // Get the current position of the source. pos, err := seeker.Seek(0, io.SeekCurrent) if err != nil { return nil, err } p.p.pos = pos } runtime.SetFinalizer(p, (*Player).finalize) return p, nil } // NewPlayerFromBytes creates a new player with the given bytes. // // As opposed to NewPlayer, you don't have to care if src is already used by another player or not. // src can be shared by multiple players. // // The format of src should be same as noted at NewPlayer. // // NewPlayerFromBytes's error is always nil as of 1.5.0-alpha. func NewPlayerFromBytes(context *Context, src []byte) (*Player, error) { b := BytesReadSeekCloser(src) p, err := NewPlayer(context, b) if err != nil { // Errors should never happen. panic(fmt.Sprintf("audio: %v at NewPlayerFromBytes", err)) } return p, nil } func (p *Player) finalize() { runtime.SetFinalizer(p, nil) if !p.IsPlaying() { p.Close() } } // Close closes the stream. // // When closing, the stream owned by the player will also be closed by calling its Close. // This means that the source stream passed via NewPlayer will also be closed. // // Close returns error when closing the source returns error. func (p *Player) Close() error { runtime.SetFinalizer(p, nil) return p.p.Close() } func (p *playerImpl) Close() error { p.m.Lock() defer p.m.Unlock() p.playing = false if p.closedExplicitly { return fmt.Errorf("audio: the player is already closed") } p.closedExplicitly = true // src.Close is called only when Player's Close is called. // TODO: Is it ok not to call src.Close when GCed? if err := p.src.Close(); err != nil { return err } return nil } // Play plays the stream. // // Play always returns nil. func (p *Player) Play() error { p.p.Play() return nil } func (p *playerImpl) Play() { p.m.Lock() defer p.m.Unlock() if p.closedExplicitly { p.context.setError(fmt.Errorf("audio: the player is already closed")) return } p.playing = true if p.isLoopActive { return } // Set p.isLoopActive to true here, not in the loop. This prevents duplicated active loops. p.isLoopActive = true p.context.addPlayer(p) go p.loop() return } func (p *playerImpl) loop() { <-p.context.inited w := p.context.c.NewPlayer() wclosed := make(chan struct{}) defer func() { <-wclosed w.Close() }() defer func() { p.m.Lock() p.playing = false p.context.removePlayer(p) p.isLoopActive = false p.m.Unlock() }() ch := make(chan []byte) defer close(ch) go func() { for buf := range ch { if _, err := w.Write(buf); err != nil { p.context.setError(err) break } p.context.setReady() } close(wclosed) }() for { buf, ok := p.read() if !ok { return } ch <- buf } } func (p *playerImpl) read() ([]byte, bool) { p.m.Lock() defer p.m.Unlock() if p.context.hasError() { return nil, false } if p.closedExplicitly { return nil, false } // playing can be false when pausing. if !p.playing { return nil, false } const bufSize = 2048 p.context.semaphore <- struct{}{} defer func() { <-p.context.semaphore }() newBuf := make([]byte, bufSize-len(p.buf)) n, err := p.src.Read(newBuf) if err != nil { if err != io.EOF { p.context.setError(err) return nil, false } if n == 0 { return nil, false } } buf := append(p.buf, newBuf[:n]...) n2 := len(buf) - len(buf)%bytesPerSample buf, p.buf = buf[:n2], buf[n2:] for i := 0; i < len(buf)/2; i++ { v16 := int16(buf[2*i]) | (int16(buf[2*i+1]) << 8) v16 = int16(float64(v16) * p.volume) buf[2*i] = byte(v16) buf[2*i+1] = byte(v16 >> 8) } p.pos += int64(len(buf)) return buf, true } // IsPlaying returns boolean indicating whether the player is playing. func (p *Player) IsPlaying() bool { return p.p.IsPlaying() } func (p *playerImpl) IsPlaying() bool { p.m.Lock() r := p.playing p.m.Unlock() return r } // Rewind rewinds the current position to the start. // // The passed source to NewPlayer must be io.Seeker, or Rewind panics. // // Rewind returns error when seeking the source stream returns error. func (p *Player) Rewind() error { return p.p.Rewind() } func (p *playerImpl) Rewind() error { if _, ok := p.src.(io.Seeker); !ok { panic("audio: player to be rewound must be io.Seeker") } return p.Seek(0) } // Seek seeks the position with the given offset. // // The passed source to NewPlayer must be io.Seeker, or Seek panics. // // Seek returns error when seeking the source stream returns error. func (p *Player) Seek(offset time.Duration) error { return p.p.Seek(offset) } func (p *playerImpl) Seek(offset time.Duration) error { p.m.Lock() defer p.m.Unlock() o := int64(offset) * bytesPerSample * int64(p.sampleRate) / int64(time.Second) o = o - (o % bytesPerSample) seeker, ok := p.src.(io.Seeker) if !ok { panic("audio: the source must be io.Seeker when seeking") } pos, err := seeker.Seek(o, io.SeekStart) if err != nil { return err } p.buf = nil p.pos = pos return nil } // Pause pauses the playing. // // Pause always returns nil. func (p *Player) Pause() error { p.p.Pause() return nil } func (p *playerImpl) Pause() { p.m.Lock() p.playing = false p.m.Unlock() } // Current returns the current position in time. func (p *Player) Current() time.Duration { return p.p.Current() } func (p *playerImpl) Current() time.Duration { p.m.Lock() sample := p.pos / bytesPerSample p.m.Unlock() return time.Duration(sample) * time.Second / time.Duration(p.sampleRate) } // Volume returns the current volume of this player [0-1]. func (p *Player) Volume() float64 { return p.p.Volume() } func (p *playerImpl) Volume() float64 { p.m.Lock() v := p.volume p.m.Unlock() return v } // SetVolume sets the volume of this player. // volume must be in between 0 and 1. SetVolume panics otherwise. func (p *Player) SetVolume(volume float64) { p.p.SetVolume(volume) } func (p *playerImpl) SetVolume(volume float64) { // The condition must be true when volume is NaN. if !(0 <= volume && volume <= 1) { panic("audio: volume must be in between 0 and 1") } p.m.Lock() p.volume = volume p.m.Unlock() }