// Copyright 2018 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package atlas import ( "fmt" "image" "runtime" "sync" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" "github.com/hajimehoshi/ebiten/v2/internal/packing" "github.com/hajimehoshi/ebiten/v2/internal/restorable" ) var ( minSize = 0 maxSize = 0 ) type temporaryBytes struct { pixels []byte pos int notFullyUsedTime int } var theTemporaryBytes temporaryBytes func temporaryBytesSize(size int) int { l := 16 for l < size { l *= 2 } return l } // alloc allocates the pixels and reutrns it. // Be careful that the returned pixels might not be zero-cleared. func (t *temporaryBytes) alloc(size int) []byte { if len(t.pixels) < t.pos+size { t.pixels = make([]byte, max(len(t.pixels)*2, temporaryBytesSize(size))) t.pos = 0 } pix := t.pixels[t.pos : t.pos+size] t.pos += size return pix } func (t *temporaryBytes) resetAtFrameEnd() { const maxNotFullyUsedTime = 60 if temporaryBytesSize(t.pos) < len(t.pixels) { if t.notFullyUsedTime < maxNotFullyUsedTime { t.notFullyUsedTime++ } } else { t.notFullyUsedTime = 0 } // Let the pixels GCed if this is not used for a while. if t.notFullyUsedTime == maxNotFullyUsedTime && len(t.pixels) > 0 { t.pixels = nil t.notFullyUsedTime = 0 } // Reset the position and reuse the allocated bytes. // t.pixels should already be sent to GPU, then this can be reused. t.pos = 0 } func max(a, b int) int { if a > b { return a } return b } func min(a, b int) int { if a < b { return a } return b } func resolveDeferred() { deferredM.Lock() fs := deferred deferred = nil deferredM.Unlock() for _, f := range fs { f() } } // baseCountToPutOnAtlas represents the base time duration when the image can be put onto an atlas. // Actual time duration is increased in an exponential way for each usages as a rendering target. const baseCountToPutOnAtlas = 10 func putImagesOnAtlas(graphicsDriver graphicsdriver.Graphics) error { for i := range imagesToPutOnAtlas { i.usedAsSourceCount++ if i.usedAsSourceCount >= baseCountToPutOnAtlas*(1< Resolve] -> [Restore -> Resolve] -> ... // // Between each frame, any image operations are not permitted, or stale images would remain when restoring // (#913). backendsM.Lock() } type ImageType int const ( ImageTypeRegular ImageType = iota ImageTypeScreen ImageTypeVolatile ImageTypeUnmanaged ) // Image is a rectangle pixel set that might be on an atlas. type Image struct { width int height int imageType ImageType disposed bool backend *backend node *packing.Node // usedAsSourceCount represents how long the image is used as a rendering source and kept not modified with // DrawTriangles. // In the current implementation, if an image is being modified by DrawTriangles, the image is separated from // a restorable image on an atlas by ensureIsolated. // // usedAsSourceCount is increased if the image is used as a rendering source, or set to 0 if the image is // modified. // // WritePixels doesn't affect this value since WritePixels can be done on images on an atlas. usedAsSourceCount int // isolatedCount represents how many times the image on a texture atlas is changed into an isolated image. // isolatedCount affects the calculation when to put the image onto a texture atlas again. isolatedCount int } // moveTo moves its content to the given image dst. // After moveTo is called, the image i is no longer available. // // moveTo is smilar to C++'s move semantics. func (i *Image) moveTo(dst *Image) { dst.dispose(false) *dst = *i // i is no longer available but Dispose must not be called // since i and dst have the same values like node. runtime.SetFinalizer(i, nil) } func (i *Image) isOnAtlas() bool { return i.node != nil } func (i *Image) resetUsedAsSourceCount() { i.usedAsSourceCount = 0 delete(imagesToPutOnAtlas, i) } func (i *Image) paddingSize() int { if i.imageType == ImageTypeRegular { return 1 } return 0 } func (i *Image) ensureIsolated() { i.resetUsedAsSourceCount() if i.backend == nil { i.allocate(false) return } if !i.isOnAtlas() { return } ox, oy, w, h := i.regionWithPadding() dx0 := float32(0) dy0 := float32(0) dx1 := float32(w) dy1 := float32(h) sx0 := float32(ox) sy0 := float32(oy) sx1 := float32(ox + w) sy1 := float32(oy + h) sw, sh := i.backend.restorable.InternalSize() sx0 /= float32(sw) sy0 /= float32(sh) sx1 /= float32(sw) sy1 /= float32(sh) typ := restorable.ImageTypeRegular if i.imageType == ImageTypeVolatile { typ = restorable.ImageTypeVolatile } newImg := restorable.NewImage(w, h, typ) vs := []float32{ dx0, dy0, sx0, sy0, 1, 1, 1, 1, dx1, dy0, sx1, sy0, 1, 1, 1, 1, dx0, dy1, sx0, sy1, 1, 1, 1, 1, dx1, dy1, sx1, sy1, 1, 1, 1, 1, } is := graphics.QuadIndices() srcs := [graphics.ShaderImageCount]*restorable.Image{i.backend.restorable} var offsets [graphics.ShaderImageCount - 1][2]float32 dstRegion := graphicsdriver.Region{ X: float32(i.paddingSize()), Y: float32(i.paddingSize()), Width: float32(w - 2*i.paddingSize()), Height: float32(h - 2*i.paddingSize()), } newImg.DrawTriangles(srcs, offsets, vs, is, graphicsdriver.CompositeModeCopy, dstRegion, graphicsdriver.Region{}, NearestFilterShader.shader, nil, false) i.dispose(false) i.backend = &backend{ restorable: newImg, } i.isolatedCount++ } func (i *Image) putOnAtlas(graphicsDriver graphicsdriver.Graphics) error { if i.backend == nil { i.allocate(true) return nil } if i.isOnAtlas() { return nil } if !i.canBePutOnAtlas() { panic("atlas: putOnAtlas cannot be called on a image that cannot be on an atlas") } if i.imageType != ImageTypeRegular { panic(fmt.Sprintf("atlas: the image type must be ImageTypeRegular but %d", i.imageType)) } newI := NewImage(i.width, i.height, ImageTypeRegular) w, h := float32(i.width), float32(i.height) vs := graphics.QuadVertices(0, 0, w, h, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1) is := graphics.QuadIndices() dr := graphicsdriver.Region{ X: 0, Y: 0, Width: w, Height: h, } newI.drawTriangles([graphics.ShaderImageCount]*Image{i}, vs, is, graphicsdriver.CompositeModeCopy, dr, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, NearestFilterShader, nil, false, true) newI.moveTo(i) i.usedAsSourceCount = 0 return nil } func (i *Image) regionWithPadding() (x, y, width, height int) { if i.backend == nil { panic("atlas: backend must not be nil: not allocated yet?") } if !i.isOnAtlas() { return 0, 0, i.width + 2*i.paddingSize(), i.height + 2*i.paddingSize() } return i.node.Region() } func (i *Image) processSrc(src *Image) { if src == nil { return } if src.disposed { panic("atlas: the drawing source image must not be disposed (DrawTriangles)") } if src.backend == nil { src.allocate(true) } // Compare i and source images after ensuring i is not on an atlas, or // i and a source image might share the same atlas even though i != src. if i.backend.restorable == src.backend.restorable { panic("atlas: Image.DrawTriangles: source must be different from the receiver") } } // DrawTriangles draws triangles with the given image. // // The vertex floats are: // // 0: Destination X in pixels // 1: Destination Y in pixels // 2: Source X in pixels (the upper-left is (0, 0)) // 3: Source Y in pixels // 4: Color R [0.0-1.0] // 5: Color G // 6: Color B // 7: Color Y func (i *Image) DrawTriangles(srcs [graphics.ShaderImageCount]*Image, vertices []float32, indices []uint16, mode graphicsdriver.CompositeMode, dstRegion, srcRegion graphicsdriver.Region, subimageOffsets [graphics.ShaderImageCount - 1][2]float32, shader *Shader, uniforms [][]float32, evenOdd bool) { backendsM.Lock() defer backendsM.Unlock() i.drawTriangles(srcs, vertices, indices, mode, dstRegion, srcRegion, subimageOffsets, shader, uniforms, evenOdd, false) } func (i *Image) drawTriangles(srcs [graphics.ShaderImageCount]*Image, vertices []float32, indices []uint16, mode graphicsdriver.CompositeMode, dstRegion, srcRegion graphicsdriver.Region, subimageOffsets [graphics.ShaderImageCount - 1][2]float32, shader *Shader, uniforms [][]float32, evenOdd bool, keepOnAtlas bool) { if i.disposed { panic("atlas: the drawing target image must not be disposed (DrawTriangles)") } if keepOnAtlas { if i.backend == nil { i.allocate(true) } } else { i.ensureIsolated() } for _, src := range srcs { i.processSrc(src) } x, y, _, _ := i.regionWithPadding() dx := float32(x + i.paddingSize()) dy := float32(y + i.paddingSize()) // TODO: Check if dstRegion does not to violate the region. dstRegion.X += dx dstRegion.Y += dy var oxf, oyf float32 if srcs[0] != nil { ox, oy, _, _ := srcs[0].regionWithPadding() ox += srcs[0].paddingSize() oy += srcs[0].paddingSize() oxf, oyf = float32(ox), float32(oy) sw, sh := srcs[0].backend.restorable.InternalSize() swf, shf := float32(sw), float32(sh) n := len(vertices) for i := 0; i < n; i += graphics.VertexFloatCount { vertices[i] = adjustDestinationPixel(vertices[i] + dx) vertices[i+1] = adjustDestinationPixel(vertices[i+1] + dy) vertices[i+2] = (vertices[i+2] + oxf) / swf vertices[i+3] = (vertices[i+3] + oyf) / shf } // srcRegion can be delibarately empty when this is not needed in order to avoid unexpected // performance issue (#1293). if srcRegion.Width != 0 && srcRegion.Height != 0 { srcRegion.X += oxf srcRegion.Y += oyf } } else { n := len(vertices) for i := 0; i < n; i += graphics.VertexFloatCount { vertices[i] = adjustDestinationPixel(vertices[i] + dx) vertices[i+1] = adjustDestinationPixel(vertices[i+1] + dy) } } var offsets [graphics.ShaderImageCount - 1][2]float32 var s *restorable.Shader var imgs [graphics.ShaderImageCount]*restorable.Image if shader == nil { // Fast path for rendering without a shader (#1355). imgs[0] = srcs[0].backend.restorable } else { for i, subimageOffset := range subimageOffsets { src := srcs[i+1] if src == nil { continue } ox, oy, _, _ := src.regionWithPadding() offsets[i][0] = float32(ox+src.paddingSize()) - oxf + subimageOffset[0] offsets[i][1] = float32(oy+src.paddingSize()) - oyf + subimageOffset[1] } s = shader.shader for i, src := range srcs { if src == nil { continue } imgs[i] = src.backend.restorable } } i.backend.restorable.DrawTriangles(imgs, offsets, vertices, indices, mode, dstRegion, srcRegion, s, uniforms, evenOdd) for _, src := range srcs { if src == nil { continue } if !src.isOnAtlas() && src.canBePutOnAtlas() { // src might already registered, but assiging it again is not harmful. imagesToPutOnAtlas[src] = struct{}{} } } } // WritePixels replaces the pixels on the image. func (i *Image) WritePixels(pix []byte, x, y, width, height int) { backendsM.Lock() defer backendsM.Unlock() i.writePixels(pix, x, y, width, height) } func (i *Image) writePixels(pix []byte, x, y, width, height int) { if i.disposed { panic("atlas: the image must not be disposed at writePixels") } if l := 4 * width * height; len(pix) != l { panic(fmt.Sprintf("atlas: len(p) must be %d but %d", l, len(pix))) } i.resetUsedAsSourceCount() if i.backend == nil { if pix == nil { return } i.allocate(true) } px, py, pw, ph := i.regionWithPadding() if x != 0 || y != 0 || width != i.width || height != i.height || i.paddingSize() == 0 { x += px + i.paddingSize() y += py + i.paddingSize() if pix == nil { i.backend.restorable.WritePixels(nil, x, y, width, height) return } // Copy pixels in the case when pix is modified before the graphics command is executed. pix2 := theTemporaryBytes.alloc(len(pix)) copy(pix2, pix) i.backend.restorable.WritePixels(pix2, x, y, width, height) return } pixb := theTemporaryBytes.alloc(4 * pw * ph) // Clear the edges. pixb might not be zero-cleared. // TODO: These loops assume that paddingSize is 1. // TODO: Is clearing edges explicitly really needed? const paddingSize = 1 if paddingSize != i.paddingSize() { panic(fmt.Sprintf("atlas: writePixels assumes the padding is always 1 but the actual padding was %d", i.paddingSize())) } rowPixels := 4 * pw for i := 0; i < rowPixels; i++ { pixb[i] = 0 pixb[rowPixels*(ph-1)+i] = 0 } for j := 1; j < ph-1; j++ { pixb[rowPixels*j] = 0 pixb[rowPixels*j+1] = 0 pixb[rowPixels*j+2] = 0 pixb[rowPixels*j+3] = 0 pixb[rowPixels*(j+1)-4] = 0 pixb[rowPixels*(j+1)-3] = 0 pixb[rowPixels*(j+1)-2] = 0 pixb[rowPixels*(j+1)-1] = 0 } // Copy the content. for j := 0; j < height; j++ { copy(pixb[4*((j+paddingSize)*pw+paddingSize):], pix[4*j*width:4*(j+1)*width]) } x += px y += py i.backend.restorable.WritePixels(pixb, x, y, pw, ph) } func (i *Image) ReadPixels(graphicsDriver graphicsdriver.Graphics, pixels []byte) error { backendsM.Lock() defer backendsM.Unlock() // In the tests, BeginFrame might not be called often and then images might not be disposed (#2292). // To prevent memory leaks, resolve the deferred functions here. resolveDeferred() if i.backend == nil || i.backend.restorable == nil { for i := range pixels { pixels[i] = 0 } return nil } ps := i.paddingSize() ox, oy, w, h := i.regionWithPadding() return i.backend.restorable.ReadPixels(graphicsDriver, pixels, ox+ps, oy+ps, w-ps*2, h-ps*2) } // MarkDisposed marks the image as disposed. The actual operation is deferred. // MarkDisposed can be called from finalizers. // // A function from finalizer must not be blocked, but disposing operation can be blocked. // Defer this operation until it becomes safe. (#913) func (i *Image) MarkDisposed() { // As MarkDisposed can be invoked from finalizers, backendsM should not be used. deferredM.Lock() deferred = append(deferred, func() { i.dispose(true) }) deferredM.Unlock() } func (i *Image) dispose(markDisposed bool) { defer func() { if markDisposed { i.disposed = true } i.backend = nil i.node = nil if markDisposed { runtime.SetFinalizer(i, nil) } }() i.resetUsedAsSourceCount() if i.disposed { return } if i.backend == nil { // Not allocated yet. return } if !i.isOnAtlas() { i.backend.restorable.Dispose() return } i.backend.page.Free(i.node) if !i.backend.page.IsEmpty() { // As this part can be reused, this should be cleared explicitly. i.backend.restorable.ClearPixels(i.regionWithPadding()) return } i.backend.restorable.Dispose() index := -1 for idx, sh := range theBackends { if sh == i.backend { index = idx break } } if index == -1 { panic("atlas: backend not found at an image being disposed") } theBackends = append(theBackends[:index], theBackends[index+1:]...) } func NewImage(width, height int, imageType ImageType) *Image { // Actual allocation is done lazily, and the lock is not needed. return &Image{ width: width, height: height, imageType: imageType, } } func (i *Image) canBePutOnAtlas() bool { if minSize == 0 || maxSize == 0 { panic("atlas: minSize or maxSize must be initialized") } if i.imageType != ImageTypeRegular { return false } return i.width+2*i.paddingSize() <= maxSize && i.height+2*i.paddingSize() <= maxSize } func (i *Image) allocate(putOnAtlas bool) { if i.backend != nil { panic("atlas: the image is already allocated") } runtime.SetFinalizer(i, (*Image).MarkDisposed) if i.imageType == ImageTypeScreen { // A screen image doesn't have a padding. i.backend = &backend{ restorable: restorable.NewImage(i.width, i.height, restorable.ImageTypeScreen), } return } if !putOnAtlas || !i.canBePutOnAtlas() { if i.width+2*i.paddingSize() > maxSize || i.height+2*i.paddingSize() > maxSize { panic(fmt.Sprintf("atlas: the image being put on an atlas is too big: width: %d, height: %d", i.width, i.height)) } typ := restorable.ImageTypeRegular if i.imageType == ImageTypeVolatile { typ = restorable.ImageTypeVolatile } i.backend = &backend{ restorable: restorable.NewImage(i.width+2*i.paddingSize(), i.height+2*i.paddingSize(), typ), } return } for _, b := range theBackends { if n, ok := b.tryAlloc(i.width+2*i.paddingSize(), i.height+2*i.paddingSize()); ok { i.backend = b i.node = n return } } size := minSize for i.width+2*i.paddingSize() > size || i.height+2*i.paddingSize() > size { if size == maxSize { panic(fmt.Sprintf("atlas: the image being put on an atlas is too big: width: %d, height: %d", i.width, i.height)) } size *= 2 } typ := restorable.ImageTypeRegular if i.imageType == ImageTypeVolatile { typ = restorable.ImageTypeVolatile } b := &backend{ restorable: restorable.NewImage(size, size, typ), page: packing.NewPage(size, maxSize), } theBackends = append(theBackends, b) n := b.page.Alloc(i.width+2*i.paddingSize(), i.height+2*i.paddingSize()) if n == nil { panic("atlas: Alloc result must not be nil at allocate") } i.backend = b i.node = n } func (i *Image) DumpScreenshot(graphicsDriver graphicsdriver.Graphics, path string, blackbg bool) (string, error) { backendsM.Lock() defer backendsM.Unlock() return i.backend.restorable.Dump(graphicsDriver, path, blackbg, image.Rect(i.paddingSize(), i.paddingSize(), i.width+i.paddingSize(), i.height+i.paddingSize())) } func EndFrame(graphicsDriver graphicsdriver.Graphics) error { backendsM.Lock() theTemporaryBytes.resetAtFrameEnd() return restorable.ResolveStaleImages(graphicsDriver) } func BeginFrame(graphicsDriver graphicsdriver.Graphics) error { defer backendsM.Unlock() var err error initOnce.Do(func() { err = restorable.InitializeGraphicsDriverState(graphicsDriver) if err != nil { return } if len(theBackends) != 0 { panic("atlas: all the images must be not on an atlas before the game starts") } // minSize and maxSize can already be set for testings. if minSize == 0 { minSize = 1024 } if maxSize == 0 { maxSize = restorable.MaxImageSize(graphicsDriver) } }) if err != nil { return err } // Restore images first before other image manipulations (#2075). if err := restorable.RestoreIfNeeded(graphicsDriver); err != nil { return err } resolveDeferred() if err := putImagesOnAtlas(graphicsDriver); err != nil { return err } return nil } func DumpImages(graphicsDriver graphicsdriver.Graphics, dir string) (string, error) { backendsM.Lock() defer backendsM.Unlock() return restorable.DumpImages(graphicsDriver, dir) } func adjustDestinationPixel(x float32) float32 { // Avoid the center of the pixel, which is problematic (#929, #1171). // Instead, align the vertices with about 1/3 pixels. // // The intention here is roughly this code: // // float32(math.Floor((float64(x)+1.0/6.0)*3) / 3) // // The actual implementation is more optimized than the above implementation. ix := float32(int(x)) if x < 0 && x != ix { ix -= 1 } frac := x - ix switch { case frac < 3.0/16.0: return ix case frac < 8.0/16.0: return ix + 5.0/16.0 case frac < 13.0/16.0: return ix + 11.0/16.0 default: return ix + 16.0/16.0 } }