// Copyright 2018 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package metal import ( "fmt" "image" "math" "runtime" "sort" "unsafe" "github.com/ebitengine/purego/objc" "github.com/hajimehoshi/ebiten/v2/internal/cocoa" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver/metal/ca" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver/metal/mtl" "github.com/hajimehoshi/ebiten/v2/internal/shaderir" ) var sel_supportsFamily = objc.RegisterName("supportsFamily:") type Graphics struct { view view colorSpace graphicsdriver.ColorSpace cq mtl.CommandQueue cb mtl.CommandBuffer rce mtl.RenderCommandEncoder dsss map[stencilMode]mtl.DepthStencilState screenDrawable ca.MetalDrawable buffers map[mtl.CommandBuffer][]mtl.Buffer unusedBuffers map[mtl.Buffer]struct{} lastDst *Image lastFillRule graphicsdriver.FillRule vb mtl.Buffer ib mtl.Buffer images map[graphicsdriver.ImageID]*Image nextImageID graphicsdriver.ImageID shaders map[graphicsdriver.ShaderID]*Shader nextShaderID graphicsdriver.ShaderID transparent bool maxImageSize int tmpTextures []mtl.Texture pool cocoa.NSAutoreleasePool } type stencilMode int const ( noStencil stencilMode = iota incrementStencil invertStencil drawWithStencil ) var ( systemDefaultDevice mtl.Device systemDefaultDeviceErr error ) func init() { // mtl.CreateSystemDefaultDevice must be called on the main thread (#2147). d, err := mtl.CreateSystemDefaultDevice() if err != nil { systemDefaultDeviceErr = err return } systemDefaultDevice = d } // NewGraphics creates an implementation of graphicsdriver.Graphics for Metal. // The returned graphics value is nil iff the error is not nil. func NewGraphics(colorSpace graphicsdriver.ColorSpace) (graphicsdriver.Graphics, error) { // On old mac devices like iMac 2011, Metal is not supported (#779). // TODO: Is there a better way to check whether Metal is available or not? // It seems OK to call MTLCreateSystemDefaultDevice multiple times, so this should be fine. if systemDefaultDeviceErr != nil { return nil, fmt.Errorf("metal: mtl.CreateSystemDefaultDevice failed: %w", systemDefaultDeviceErr) } g := &Graphics{ colorSpace: colorSpace, } if runtime.GOOS != "ios" { // Initializing a Metal device and a layer must be done in the main thread on macOS. // Note that this assumes NewGraphics is called on the main thread on desktops. if err := g.view.initialize(systemDefaultDevice, colorSpace); err != nil { return nil, err } } return g, nil } func (g *Graphics) Begin() error { // NSAutoreleasePool is required to release drawable correctly (#847). // https://developer.apple.com/library/archive/documentation/3DDrawing/Conceptual/MTLBestPracticesGuide/Drawables.html g.pool = cocoa.NSAutoreleasePool_new() return nil } func (g *Graphics) End(present bool) error { g.flushIfNeeded(present) g.screenDrawable = ca.MetalDrawable{} g.pool.Release() g.pool.ID = 0 return nil } func (g *Graphics) SetWindow(window uintptr) { // Note that [NSApp mainWindow] returns nil when the window is borderless. // Then the window is needed to be given explicitly. g.view.setWindow(window) } func (g *Graphics) SetUIView(uiview uintptr) { // TODO: Should this be called on the main thread? g.view.setUIView(uiview) } func pow2(x uintptr) uintptr { if x > (math.MaxUint+1)/2 { return math.MaxUint } var p2 uintptr = 1 for p2 < x { p2 *= 2 } return p2 } func (g *Graphics) gcBuffers() { for cb, bs := range g.buffers { // If the command buffer still lives, the buffer must not be updated. // TODO: Handle an error? if cb.Status() != mtl.CommandBufferStatusCompleted { continue } for _, b := range bs { if g.unusedBuffers == nil { g.unusedBuffers = map[mtl.Buffer]struct{}{} } g.unusedBuffers[b] = struct{}{} } delete(g.buffers, cb) cb.Release() } const maxUnusedBuffers = 10 if len(g.unusedBuffers) > maxUnusedBuffers { bufs := make([]mtl.Buffer, 0, len(g.unusedBuffers)) for b := range g.unusedBuffers { bufs = append(bufs, b) } sort.Slice(bufs, func(a, b int) bool { return bufs[a].Length() > bufs[b].Length() }) for _, b := range bufs[maxUnusedBuffers:] { delete(g.unusedBuffers, b) b.Release() } } } func (g *Graphics) availableBuffer(length uintptr) mtl.Buffer { if g.cb == (mtl.CommandBuffer{}) { g.cb = g.cq.CommandBuffer() } var newBuf mtl.Buffer for b := range g.unusedBuffers { if b.Length() >= length { newBuf = b delete(g.unusedBuffers, b) break } } if newBuf == (mtl.Buffer{}) { newBuf = g.view.getMTLDevice().NewBufferWithLength(pow2(length), resourceStorageMode) } if g.buffers == nil { g.buffers = map[mtl.CommandBuffer][]mtl.Buffer{} } if _, ok := g.buffers[g.cb]; !ok { g.cb.Retain() } g.buffers[g.cb] = append(g.buffers[g.cb], newBuf) return newBuf } func (g *Graphics) SetVertices(vertices []float32, indices []uint32) error { vbSize := unsafe.Sizeof(vertices[0]) * uintptr(len(vertices)) ibSize := unsafe.Sizeof(indices[0]) * uintptr(len(indices)) g.vb = g.availableBuffer(vbSize) g.vb.CopyToContents(unsafe.Pointer(&vertices[0]), vbSize) g.ib = g.availableBuffer(ibSize) g.ib.CopyToContents(unsafe.Pointer(&indices[0]), ibSize) return nil } func (g *Graphics) flushIfNeeded(present bool) { if g.cb == (mtl.CommandBuffer{}) && !present { return } g.flushRenderCommandEncoderIfNeeded() if present { // This check is necessary when skipping to render the screen (SetScreenClearedEveryFrame(false)). if g.screenDrawable == (ca.MetalDrawable{}) && g.cb != (mtl.CommandBuffer{}) { g.screenDrawable = g.view.nextDrawable() } if g.screenDrawable != (ca.MetalDrawable{}) { g.cb.PresentDrawable(g.screenDrawable) } } g.cb.Commit() for _, t := range g.tmpTextures { t.Release() } g.tmpTextures = g.tmpTextures[:0] g.cb = mtl.CommandBuffer{} } func (g *Graphics) checkSize(width, height int) { if width < 1 { panic(fmt.Sprintf("metal: width (%d) must be equal or more than %d", width, 1)) } if height < 1 { panic(fmt.Sprintf("metal: height (%d) must be equal or more than %d", height, 1)) } m := g.MaxImageSize() if width > m { panic(fmt.Sprintf("metal: width (%d) must be less than or equal to %d", width, m)) } if height > m { panic(fmt.Sprintf("metal: height (%d) must be less than or equal to %d", height, m)) } } func (g *Graphics) genNextImageID() graphicsdriver.ImageID { g.nextImageID++ return g.nextImageID } func (g *Graphics) genNextShaderID() graphicsdriver.ShaderID { g.nextShaderID++ return g.nextShaderID } func (g *Graphics) NewImage(width, height int) (graphicsdriver.Image, error) { g.checkSize(width, height) td := mtl.TextureDescriptor{ TextureType: mtl.TextureType2D, PixelFormat: mtl.PixelFormatRGBA8UNorm, Width: graphics.InternalImageSize(width), Height: graphics.InternalImageSize(height), StorageMode: storageMode, Usage: mtl.TextureUsageShaderRead | mtl.TextureUsageRenderTarget, } t := g.view.getMTLDevice().NewTextureWithDescriptor(td) i := &Image{ id: g.genNextImageID(), graphics: g, width: width, height: height, texture: t, } g.addImage(i) return i, nil } func (g *Graphics) NewScreenFramebufferImage(width, height int) (graphicsdriver.Image, error) { g.view.setDrawableSize(width, height) i := &Image{ id: g.genNextImageID(), graphics: g, width: width, height: height, screen: true, } g.addImage(i) return i, nil } func (g *Graphics) addImage(img *Image) { if g.images == nil { g.images = map[graphicsdriver.ImageID]*Image{} } if _, ok := g.images[img.id]; ok { panic(fmt.Sprintf("metal: image ID %d was already registered", img.id)) } g.images[img.id] = img } func (g *Graphics) removeImage(img *Image) { delete(g.images, img.id) } func (g *Graphics) SetTransparent(transparent bool) { g.transparent = transparent } func blendFactorToMetalBlendFactor(c graphicsdriver.BlendFactor) mtl.BlendFactor { switch c { case graphicsdriver.BlendFactorZero: return mtl.BlendFactorZero case graphicsdriver.BlendFactorOne: return mtl.BlendFactorOne case graphicsdriver.BlendFactorSourceColor: return mtl.BlendFactorSourceColor case graphicsdriver.BlendFactorOneMinusSourceColor: return mtl.BlendFactorOneMinusSourceColor case graphicsdriver.BlendFactorSourceAlpha: return mtl.BlendFactorSourceAlpha case graphicsdriver.BlendFactorOneMinusSourceAlpha: return mtl.BlendFactorOneMinusSourceAlpha case graphicsdriver.BlendFactorDestinationColor: return mtl.BlendFactorDestinationColor case graphicsdriver.BlendFactorOneMinusDestinationColor: return mtl.BlendFactorOneMinusDestinationColor case graphicsdriver.BlendFactorDestinationAlpha: return mtl.BlendFactorDestinationAlpha case graphicsdriver.BlendFactorOneMinusDestinationAlpha: return mtl.BlendFactorOneMinusDestinationAlpha case graphicsdriver.BlendFactorSourceAlphaSaturated: return mtl.BlendFactorSourceAlphaSaturated default: panic(fmt.Sprintf("metal: invalid blend factor: %d", c)) } } func blendOperationToMetalBlendOperation(o graphicsdriver.BlendOperation) mtl.BlendOperation { switch o { case graphicsdriver.BlendOperationAdd: return mtl.BlendOperationAdd case graphicsdriver.BlendOperationSubtract: return mtl.BlendOperationSubtract case graphicsdriver.BlendOperationReverseSubtract: return mtl.BlendOperationReverseSubtract case graphicsdriver.BlendOperationMin: return mtl.BlendOperationMin case graphicsdriver.BlendOperationMax: return mtl.BlendOperationMax default: panic(fmt.Sprintf("metal: invalid blend operation: %d", o)) } } func (g *Graphics) Initialize() error { // Creating *State objects are expensive and reuse them whenever possible. // See https://developer.apple.com/library/archive/documentation/Miscellaneous/Conceptual/MetalProgrammingGuide/Cmd-Submiss/Cmd-Submiss.html for _, dss := range g.dsss { dss.Release() } if g.dsss == nil { g.dsss = map[stencilMode]mtl.DepthStencilState{} } if runtime.GOOS == "ios" { // Initializing a Metal device and a layer must be done in the render thread on iOS. if err := g.view.initialize(systemDefaultDevice, g.colorSpace); err != nil { return err } } if g.transparent { g.view.ml.SetOpaque(false) } // The stencil reference value is always 0 (default). g.dsss[noStencil] = g.view.getMTLDevice().NewDepthStencilStateWithDescriptor(mtl.DepthStencilDescriptor{ BackFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationKeep, StencilCompareFunction: mtl.CompareFunctionAlways, }, FrontFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationKeep, StencilCompareFunction: mtl.CompareFunctionAlways, }, }) g.dsss[incrementStencil] = g.view.getMTLDevice().NewDepthStencilStateWithDescriptor(mtl.DepthStencilDescriptor{ BackFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationDecrementWrap, StencilCompareFunction: mtl.CompareFunctionAlways, }, FrontFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationIncrementWrap, StencilCompareFunction: mtl.CompareFunctionAlways, }, }) g.dsss[invertStencil] = g.view.getMTLDevice().NewDepthStencilStateWithDescriptor(mtl.DepthStencilDescriptor{ BackFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationInvert, StencilCompareFunction: mtl.CompareFunctionAlways, }, FrontFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationInvert, StencilCompareFunction: mtl.CompareFunctionAlways, }, }) g.dsss[drawWithStencil] = g.view.getMTLDevice().NewDepthStencilStateWithDescriptor(mtl.DepthStencilDescriptor{ BackFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationKeep, StencilCompareFunction: mtl.CompareFunctionNotEqual, }, FrontFaceStencil: mtl.StencilDescriptor{ StencilFailureOperation: mtl.StencilOperationKeep, DepthFailureOperation: mtl.StencilOperationKeep, DepthStencilPassOperation: mtl.StencilOperationKeep, StencilCompareFunction: mtl.CompareFunctionNotEqual, }, }) g.cq = g.view.getMTLDevice().NewCommandQueue() return nil } func (g *Graphics) flushRenderCommandEncoderIfNeeded() { if g.rce == (mtl.RenderCommandEncoder{}) { return } g.rce.EndEncoding() g.rce = mtl.RenderCommandEncoder{} g.lastDst = nil } func (g *Graphics) draw(dst *Image, dstRegions []graphicsdriver.DstRegion, srcs [graphics.ShaderSrcImageCount]*Image, indexOffset int, shader *Shader, uniforms []uint32, blend graphicsdriver.Blend, fillRule graphicsdriver.FillRule) error { // When preparing a stencil buffer, flush the current render command encoder // to make sure the stencil buffer is cleared when loading. // TODO: What about clearing the stencil buffer by vertices? if g.lastDst != dst || g.lastFillRule != fillRule || fillRule != graphicsdriver.FillRuleFillAll { g.flushRenderCommandEncoderIfNeeded() } g.lastDst = dst g.lastFillRule = fillRule if g.rce == (mtl.RenderCommandEncoder{}) { rpd := mtl.RenderPassDescriptor{} // Even though the destination pixels are not used, mtl.LoadActionDontCare might cause glitches // (#1019). Always using mtl.LoadActionLoad is safe. if dst.screen { rpd.ColorAttachments[0].LoadAction = mtl.LoadActionClear } else { rpd.ColorAttachments[0].LoadAction = mtl.LoadActionLoad } // The store action should always be 'store' even for the screen (#1700). rpd.ColorAttachments[0].StoreAction = mtl.StoreActionStore t := dst.mtlTexture() if t == (mtl.Texture{}) { return nil } rpd.ColorAttachments[0].Texture = t rpd.ColorAttachments[0].ClearColor = mtl.ClearColor{} if fillRule != graphicsdriver.FillRuleFillAll { dst.ensureStencil() rpd.StencilAttachment.LoadAction = mtl.LoadActionClear rpd.StencilAttachment.StoreAction = mtl.StoreActionDontCare rpd.StencilAttachment.Texture = dst.stencil } if g.cb == (mtl.CommandBuffer{}) { g.cb = g.cq.CommandBuffer() } g.rce = g.cb.RenderCommandEncoderWithDescriptor(rpd) } w, h := dst.internalSize() g.rce.SetViewport(mtl.Viewport{ OriginX: 0, OriginY: 0, Width: float64(w), Height: float64(h), ZNear: -1, ZFar: 1, }) g.rce.SetVertexBuffer(g.vb, 0, 0) if len(uniforms) > 0 { uniforms := adjustUniformVariablesLayout(shader.ir.Uniforms, uniforms) head := unsafe.SliceData(uniforms) g.rce.SetVertexBytes(unsafe.Pointer(head), unsafe.Sizeof(uniforms[0])*uintptr(len(uniforms)), 1) g.rce.SetFragmentBytes(unsafe.Pointer(head), unsafe.Sizeof(uniforms[0])*uintptr(len(uniforms)), 0) } for i, src := range srcs { if src != nil { g.rce.SetFragmentTexture(src.texture, i) } else { g.rce.SetFragmentTexture(mtl.Texture{}, i) } } var ( noStencilRpss mtl.RenderPipelineState incrementStencilRpss mtl.RenderPipelineState invertStencilRpss mtl.RenderPipelineState drawWithStencilRpss mtl.RenderPipelineState ) switch fillRule { case graphicsdriver.FillRuleFillAll: s, err := shader.RenderPipelineState(&g.view, blend, noStencil, dst.screen) if err != nil { return err } noStencilRpss = s case graphicsdriver.FillRuleNonZero: s, err := shader.RenderPipelineState(&g.view, blend, incrementStencil, dst.screen) if err != nil { return err } incrementStencilRpss = s case graphicsdriver.FillRuleEvenOdd: s, err := shader.RenderPipelineState(&g.view, blend, invertStencil, dst.screen) if err != nil { return err } invertStencilRpss = s } if fillRule != graphicsdriver.FillRuleFillAll { s, err := shader.RenderPipelineState(&g.view, blend, drawWithStencil, dst.screen) if err != nil { return err } drawWithStencilRpss = s } for _, dstRegion := range dstRegions { g.rce.SetScissorRect(mtl.ScissorRect{ X: dstRegion.Region.Min.X, Y: dstRegion.Region.Min.Y, Width: dstRegion.Region.Dx(), Height: dstRegion.Region.Dy(), }) switch fillRule { case graphicsdriver.FillRuleFillAll: g.rce.SetDepthStencilState(g.dsss[noStencil]) g.rce.SetRenderPipelineState(noStencilRpss) g.rce.DrawIndexedPrimitives(mtl.PrimitiveTypeTriangle, dstRegion.IndexCount, mtl.IndexTypeUInt32, g.ib, indexOffset*int(unsafe.Sizeof(uint32(0)))) case graphicsdriver.FillRuleNonZero: g.rce.SetDepthStencilState(g.dsss[incrementStencil]) g.rce.SetRenderPipelineState(incrementStencilRpss) g.rce.DrawIndexedPrimitives(mtl.PrimitiveTypeTriangle, dstRegion.IndexCount, mtl.IndexTypeUInt32, g.ib, indexOffset*int(unsafe.Sizeof(uint32(0)))) case graphicsdriver.FillRuleEvenOdd: g.rce.SetDepthStencilState(g.dsss[invertStencil]) g.rce.SetRenderPipelineState(invertStencilRpss) g.rce.DrawIndexedPrimitives(mtl.PrimitiveTypeTriangle, dstRegion.IndexCount, mtl.IndexTypeUInt32, g.ib, indexOffset*int(unsafe.Sizeof(uint32(0)))) } if fillRule != graphicsdriver.FillRuleFillAll { g.rce.SetDepthStencilState(g.dsss[drawWithStencil]) g.rce.SetRenderPipelineState(drawWithStencilRpss) g.rce.DrawIndexedPrimitives(mtl.PrimitiveTypeTriangle, dstRegion.IndexCount, mtl.IndexTypeUInt32, g.ib, indexOffset*int(unsafe.Sizeof(uint32(0)))) } indexOffset += dstRegion.IndexCount } return nil } func (g *Graphics) DrawTriangles(dstID graphicsdriver.ImageID, srcIDs [graphics.ShaderSrcImageCount]graphicsdriver.ImageID, shaderID graphicsdriver.ShaderID, dstRegions []graphicsdriver.DstRegion, indexOffset int, blend graphicsdriver.Blend, uniforms []uint32, fillRule graphicsdriver.FillRule) error { if shaderID == graphicsdriver.InvalidShaderID { return fmt.Errorf("metal: shader ID is invalid") } dst := g.images[dstID] if dst.screen { g.view.update() } var srcs [graphics.ShaderSrcImageCount]*Image for i, srcID := range srcIDs { srcs[i] = g.images[srcID] } if err := g.draw(dst, dstRegions, srcs, indexOffset, g.shaders[shaderID], uniforms, blend, fillRule); err != nil { return err } return nil } func (g *Graphics) SetVsyncEnabled(enabled bool) { g.view.setDisplaySyncEnabled(enabled) } func (g *Graphics) NeedsClearingScreen() bool { return false } func (g *Graphics) MaxImageSize() int { if g.maxImageSize != 0 { return g.maxImageSize } d := g.view.getMTLDevice() // supportsFamily is available as of macOS 10.15+ and iOS 13.0+. // https://developer.apple.com/documentation/metal/mtldevice/3143473-supportsfamily if d.RespondsToSelector(sel_supportsFamily) { // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf g.maxImageSize = 8192 switch { case d.SupportsFamily(mtl.GPUFamilyApple3): g.maxImageSize = 16384 case d.SupportsFamily(mtl.GPUFamilyMac2): g.maxImageSize = 16384 } return g.maxImageSize } // supportsFeatureSet is deprecated but some old macOS/iOS versions support only this (#2553). switch { case d.SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily5_v1): g.maxImageSize = 16384 case d.SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily4_v1): g.maxImageSize = 16384 case d.SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily3_v1): g.maxImageSize = 16384 case d.SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily2_v2): g.maxImageSize = 8192 case d.SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily2_v1): g.maxImageSize = 4096 case d.SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily1_v2): g.maxImageSize = 8192 case d.SupportsFeatureSet(mtl.FeatureSet_iOS_GPUFamily1_v1): g.maxImageSize = 4096 case d.SupportsFeatureSet(mtl.FeatureSet_tvOS_GPUFamily2_v1): g.maxImageSize = 16384 case d.SupportsFeatureSet(mtl.FeatureSet_tvOS_GPUFamily1_v1): g.maxImageSize = 8192 case d.SupportsFeatureSet(mtl.FeatureSet_macOS_GPUFamily1_v1): g.maxImageSize = 16384 default: panic("metal: there is no supported feature set") } return g.maxImageSize } func (g *Graphics) NewShader(program *shaderir.Program) (graphicsdriver.Shader, error) { s, err := newShader(g.view.getMTLDevice(), g.genNextShaderID(), program) if err != nil { return nil, err } g.addShader(s) return s, nil } func (g *Graphics) addShader(shader *Shader) { if g.shaders == nil { g.shaders = map[graphicsdriver.ShaderID]*Shader{} } if _, ok := g.shaders[shader.id]; ok { panic(fmt.Sprintf("metal: shader ID %d was already registered", shader.id)) } g.shaders[shader.id] = shader } func (g *Graphics) removeShader(shader *Shader) { delete(g.shaders, shader.id) } type Image struct { id graphicsdriver.ImageID graphics *Graphics width int height int screen bool texture mtl.Texture stencil mtl.Texture } func (i *Image) ID() graphicsdriver.ImageID { return i.id } func (i *Image) internalSize() (int, int) { if i.screen { return i.width, i.height } return graphics.InternalImageSize(i.width), graphics.InternalImageSize(i.height) } func (i *Image) Dispose() { if i.stencil != (mtl.Texture{}) { i.stencil.Release() i.stencil = mtl.Texture{} } if i.texture != (mtl.Texture{}) { i.texture.Release() i.texture = mtl.Texture{} } i.graphics.removeImage(i) } func (i *Image) syncTexture() { i.graphics.flushRenderCommandEncoderIfNeeded() // Calling SynchronizeTexture is ignored on iOS (see mtl.m), but it looks like committing BlitCommandEncoder // is necessary (#1337). if i.graphics.cb != (mtl.CommandBuffer{}) { panic("metal: command buffer must be empty at syncTexture: flushIfNeeded is not called yet?") } cb := i.graphics.cq.CommandBuffer() bce := cb.BlitCommandEncoder() bce.SynchronizeTexture(i.texture, 0, 0) bce.EndEncoding() cb.Commit() // TODO: Are fences available here? cb.WaitUntilCompleted() } func (i *Image) ReadPixels(args []graphicsdriver.PixelsArgs) error { i.graphics.flushIfNeeded(false) i.syncTexture() for _, arg := range args { if got, want := len(arg.Pixels), 4*arg.Region.Dx()*arg.Region.Dy(); got != want { return fmt.Errorf("metal: len(buf) must be %d but %d at ReadPixels", want, got) } i.texture.GetBytes(&arg.Pixels[0], uintptr(4*arg.Region.Dx()), mtl.Region{ Origin: mtl.Origin{X: arg.Region.Min.X, Y: arg.Region.Min.Y}, Size: mtl.Size{Width: arg.Region.Dx(), Height: arg.Region.Dy(), Depth: 1}, }, 0) } return nil } func (i *Image) WritePixels(args []graphicsdriver.PixelsArgs) error { g := i.graphics g.flushRenderCommandEncoderIfNeeded() // Calculate the smallest texture size to include all the values in args. var region image.Rectangle for _, a := range args { region = region.Union(a.Region) } // Use a temporary texture to send pixels asynchronously, whichever the memory is shared (e.g., iOS) or // managed (e.g., macOS). A temporary texture is needed since ReplaceRegion tries to sync the pixel // data between CPU and GPU, and doing it on the existing texture is inefficient (#1418). // The texture cannot be reused until sending the pixels finishes, then create new ones for each call. td := mtl.TextureDescriptor{ TextureType: mtl.TextureType2D, PixelFormat: mtl.PixelFormatRGBA8UNorm, Width: region.Dx(), Height: region.Dy(), StorageMode: storageMode, Usage: mtl.TextureUsageShaderRead | mtl.TextureUsageRenderTarget, } t := g.view.getMTLDevice().NewTextureWithDescriptor(td) g.tmpTextures = append(g.tmpTextures, t) for _, a := range args { t.ReplaceRegion(mtl.Region{ Origin: mtl.Origin{X: a.Region.Min.X - region.Min.X, Y: a.Region.Min.Y - region.Min.Y, Z: 0}, Size: mtl.Size{Width: a.Region.Dx(), Height: a.Region.Dy(), Depth: 1}, }, 0, unsafe.Pointer(&a.Pixels[0]), 4*a.Region.Dx()) } if g.cb == (mtl.CommandBuffer{}) { g.cb = i.graphics.cq.CommandBuffer() } bce := g.cb.BlitCommandEncoder() for _, a := range args { so := mtl.Origin{X: a.Region.Min.X - region.Min.X, Y: a.Region.Min.Y - region.Min.Y, Z: 0} ss := mtl.Size{Width: a.Region.Dx(), Height: a.Region.Dy(), Depth: 1} do := mtl.Origin{X: a.Region.Min.X, Y: a.Region.Min.Y, Z: 0} bce.CopyFromTexture(t, 0, 0, so, ss, i.texture, 0, 0, do) } bce.EndEncoding() return nil } func (i *Image) mtlTexture() mtl.Texture { if i.screen { g := i.graphics if g.screenDrawable == (ca.MetalDrawable{}) { drawable := g.view.nextDrawable() if drawable == (ca.MetalDrawable{}) { return mtl.Texture{} } g.screenDrawable = drawable // After nextDrawable, it is expected some command buffers are completed. g.gcBuffers() } return g.screenDrawable.Texture() } return i.texture } func (i *Image) ensureStencil() { if i.stencil != (mtl.Texture{}) { return } td := mtl.TextureDescriptor{ TextureType: mtl.TextureType2D, PixelFormat: mtl.PixelFormatStencil8, Width: graphics.InternalImageSize(i.width), Height: graphics.InternalImageSize(i.height), StorageMode: mtl.StorageModePrivate, Usage: mtl.TextureUsageRenderTarget, } i.stencil = i.graphics.view.getMTLDevice().NewTextureWithDescriptor(td) } // adjustUniformVariablesLayout returns adjusted uniform variables to match the Metal's memory layout. func adjustUniformVariablesLayout(uniformTypes []shaderir.Type, uniforms []uint32) []uint32 { // Each type's alignment is defined by the specification. // See https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf var values []uint32 fillZerosToFitAlignment := func(values []uint32, align int) []uint32 { if len(values) == 0 { return values } n0 := len(values) n1 := ((len(values)-1)/align + 1) * align if n0 == n1 { return values } return append(values, make([]uint32, n1-n0)...) } var idx int for i, typ := range uniformTypes { n := typ.Uint32Count() switch typ.Main { case shaderir.Float, shaderir.Int: values = append(values, uniforms[idx:idx+n]...) case shaderir.Vec2, shaderir.IVec2: values = fillZerosToFitAlignment(values, 2) values = append(values, uniforms[idx:idx+n]...) case shaderir.Vec3, shaderir.IVec3: values = fillZerosToFitAlignment(values, 4) values = append(values, uniforms[idx:idx+n]...) values = append(values, 0) case shaderir.Vec4, shaderir.IVec4: values = fillZerosToFitAlignment(values, 4) values = append(values, uniforms[idx:idx+n]...) case shaderir.Mat2: values = fillZerosToFitAlignment(values, 2) values = append(values, uniforms[idx:idx+n]...) case shaderir.Mat3: values = fillZerosToFitAlignment(values, 4) values = append(values, uniforms[idx:idx+3]...) values = append(values, 0) values = append(values, uniforms[idx+3:idx+6]...) values = append(values, 0) values = append(values, uniforms[idx+6:idx+9]...) values = append(values, 0) case shaderir.Mat4: values = fillZerosToFitAlignment(values, 4) if i == graphics.ProjectionMatrixUniformVariableIndex { // In Metal, the NDC's Y direction (upward) and the framebuffer's Y direction (downward) don't // match. Then, the Y direction must be inverted. // Invert the sign bits as float32 values. u := uniforms[idx : idx+16] values = append(values, u[0], u[1]^uint32(1<<31), u[2], u[3], u[4], u[5]^uint32(1<<31), u[6], u[7], u[8], u[9]^uint32(1<<31), u[10], u[11], u[12], u[13]^uint32(1<<31), u[14], u[15], ) } else { values = append(values, uniforms[idx:idx+n]...) } case shaderir.Array: switch typ.Sub[0].Main { case shaderir.Float, shaderir.Int: values = append(values, uniforms[idx:idx+n]...) case shaderir.Vec2, shaderir.IVec2: values = fillZerosToFitAlignment(values, 2) values = append(values, uniforms[idx:idx+n]...) case shaderir.Vec3, shaderir.IVec3: values = fillZerosToFitAlignment(values, 4) for j := 0; j < typ.Length; j++ { values = append(values, uniforms[idx+3*j:idx+3*(j+1)]...) values = append(values, 0) } case shaderir.Vec4, shaderir.IVec4: values = fillZerosToFitAlignment(values, 4) values = append(values, uniforms[idx:idx+n]...) case shaderir.Mat2: values = fillZerosToFitAlignment(values, 2) values = append(values, uniforms[idx:idx+n]...) case shaderir.Mat3: values = fillZerosToFitAlignment(values, 4) for j := 0; j < typ.Length; j++ { values = append(values, uniforms[idx+9*j:idx+9*j+3]...) values = append(values, 0) values = append(values, uniforms[idx+9*j+3:idx+9*j+6]...) values = append(values, 0) values = append(values, uniforms[idx+9*j+6:idx+9*j+9]...) values = append(values, 0) } case shaderir.Mat4: values = fillZerosToFitAlignment(values, 4) values = append(values, uniforms[idx:idx+n]...) default: panic(fmt.Sprintf("metal: not implemented type for uniform variables: %s", typ.String())) } default: panic(fmt.Sprintf("metal: not implemented type for uniform variables: %s", typ.String())) } idx += n } return values }