// Copyright 2014 Hajime Hoshi // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ebiten import ( "fmt" "image" "image/color" "math" "sync/atomic" "github.com/hajimehoshi/ebiten/internal/graphics" "github.com/hajimehoshi/ebiten/internal/shareable" ) type mipmap struct { orig *shareable.Image imgs map[image.Rectangle][]*shareable.Image } func newMipmap(s *shareable.Image) *mipmap { return &mipmap{ orig: s, imgs: map[image.Rectangle][]*shareable.Image{}, } } func (m *mipmap) original() *shareable.Image { return m.orig } func (m *mipmap) level(r image.Rectangle, level int) *shareable.Image { if level <= 0 { panic("ebiten: level must be positive at level") } imgs, ok := m.imgs[r] if !ok { imgs = []*shareable.Image{} m.imgs[r] = imgs } idx := level - 1 size := r.Size() w, h := size.X, size.Y if len(imgs) > 0 { w, h = imgs[len(imgs)-1].Size() } for len(imgs) < idx+1 { if m.orig.IsVolatile() { panic("ebiten: mipmap images for a volatile image is not implemented yet") } w2 := w / 2 h2 := h / 2 if w2 == 0 || h2 == 0 { return nil } s := shareable.NewImage(w2, h2) var src *shareable.Image vs := vertexSlice(4) if l := len(imgs); l == 0 { src = m.orig src.PutQuadVertices(vs, r.Min.X, r.Min.Y, r.Max.X, r.Max.Y, 0.5, 0, 0, 0.5, 0, 0, 1, 1, 1, 1) } else { src = m.level(r, l) src.PutQuadVertices(vs, 0, 0, w, h, 0.5, 0, 0, 0.5, 0, 0, 1, 1, 1, 1) } is := graphics.QuadIndices() s.DrawTriangles(src, vs, is, nil, graphics.CompositeModeCopy, graphics.FilterLinear, graphics.AddressClampToZero) imgs = append(imgs, s) w = w2 h = h2 } m.imgs[r] = imgs if len(imgs) <= idx { return nil } return imgs[idx] } func (m *mipmap) isDisposed() bool { return m.orig == nil } func (m *mipmap) dispose() { m.disposeMipmaps() m.orig.Dispose() m.orig = nil } func (m *mipmap) disposeMipmaps() { for _, a := range m.imgs { for _, img := range a { img.Dispose() } } for k := range m.imgs { delete(m.imgs, k) } } // Image represents a rectangle set of pixels. // The pixel format is alpha-premultiplied RGBA. // Image implements image.Image and draw.Image. // // Functions of Image never returns error as of 1.5.0-alpha, and error values are always nil. type Image struct { // addr holds self to check copying. // See strings.Builder for similar examples. addr *Image // mipmap is a set of shareable.Image sorted by the order of mipmap level. // The level 0 image is a regular image and higher-level images are used for mipmap. mipmap *mipmap bounds image.Rectangle original *Image pendingPixels []byte filter Filter } func (i *Image) copyCheck() { if i.addr != i { panic("ebiten: illegal use of non-zero Image copied by value") } } // Size returns the size of the image. func (i *Image) Size() (width, height int) { s := i.Bounds().Size() return s.X, s.Y } func (i *Image) isDisposed() bool { return i.mipmap.isDisposed() } func (i *Image) isSubImage() bool { return i.original != nil } // Clear resets the pixels of the image into 0. // // When the image is disposed, Clear does nothing. // // Clear always returns nil as of 1.5.0-alpha. func (i *Image) Clear() error { i.Fill(color.Transparent) return nil } // Fill fills the image with a solid color. // // When the image is disposed, Fill does nothing. // // Fill always returns nil as of 1.5.0-alpha. func (i *Image) Fill(clr color.Color) error { i.copyCheck() if i.isDisposed() { return nil } // TODO: Implement this. if i.isSubImage() { panic("ebiten: render to a subimage is not implemented (Fill)") } i.resolvePendingPixels(false) r16, g16, b16, a16 := clr.RGBA() r, g, b, a := uint8(r16>>8), uint8(g16>>8), uint8(b16>>8), uint8(a16>>8) i.mipmap.original().Fill(r, g, b, a) i.disposeMipmaps() return nil } func (i *Image) disposeMipmaps() { if i.isDisposed() { panic("ebiten: the image is already disposed at disposeMipmap") } i.mipmap.disposeMipmaps() } // DrawImage draws the given image on the image i. // // DrawImage accepts the options. For details, see the document of // DrawImageOptions. // // For drawing, the pixels of the argument image at the time of this call is // adopted. Even if the argument image is mutated after this call, the drawing // result is never affected. // // When the image i is disposed, DrawImage does nothing. // When the given image img is disposed, DrawImage panics. // // When the given image is as same as i, DrawImage panics. // // DrawImage works more efficiently as batches // when the successive calls of DrawImages satisfy the below conditions: // // * All render targets are same (A in A.DrawImage(B, op)) // * Either all ColorM element values are same or all the ColorM have only // diagonal ('scale') elements // * If only (*ColorM).Scale is applied to a ColorM, the ColorM has only // diagonal elements. The other ColorM functions might modify the other // elements. // * All CompositeMode values are same // * All Filter values are same // // Even when all the above conditions are satisfied, multiple draw commands can // be used in really rare cases. Ebiten images usually share an internal // automatic texture atlas, but when you consume the atlas, or you create a huge // image, those images cannot be on the same texture atlas. In this case, draw // commands are separated. The texture atlas size is 4096x4096 so far. Another // case is when you use an offscreen as a render source. An offscreen doesn't // share the texture atlas with high probability. // // For more performance tips, see https://github.com/hajimehoshi/ebiten/wiki/Performance-Tips. // // DrawImage always returns nil as of 1.5.0-alpha. func (i *Image) DrawImage(img *Image, options *DrawImageOptions) error { i.copyCheck() if img.isDisposed() { panic("ebiten: the given image to DrawImage must not be disposed") } if i.isDisposed() { return nil } // TODO: Implement this. if i.isSubImage() { panic("ebiten: render to a subimage is not implemented (drawImage)") } img.resolvePendingPixels(true) i.resolvePendingPixels(true) // Calculate vertices before locking because the user can do anything in // options.ImageParts interface without deadlock (e.g. Call Image functions). if options == nil { options = &DrawImageOptions{} } parts := options.ImageParts // Parts is deprecated. This implementations is for backward compatibility. if parts == nil && options.Parts != nil { parts = imageParts(options.Parts) } // ImageParts is deprecated. This implementations is for backward compatibility. if parts != nil { l := parts.Len() for idx := 0; idx < l; idx++ { sx0, sy0, sx1, sy1 := parts.Src(idx) dx0, dy0, dx1, dy1 := parts.Dst(idx) op := &DrawImageOptions{ ColorM: options.ColorM, CompositeMode: options.CompositeMode, Filter: options.Filter, } op.GeoM.Scale( float64(dx1-dx0)/float64(sx1-sx0), float64(dy1-dy0)/float64(sy1-sy0)) op.GeoM.Translate(float64(dx0), float64(dy0)) op.GeoM.Concat(options.GeoM) i.DrawImage(img.SubImage(image.Rect(sx0, sy0, sx1, sy1)).(*Image), op) } return nil } bounds := img.Bounds() // SourceRect is deprecated. This implementation is for backward compatibility. if options.SourceRect != nil { bounds = bounds.Intersect(*options.SourceRect) if bounds.Empty() { return nil } } geom := &options.GeoM mode := graphics.CompositeMode(options.CompositeMode) filter := graphics.FilterNearest if options.Filter != FilterDefault { filter = graphics.Filter(options.Filter) } else if img.filter != FilterDefault { filter = graphics.Filter(img.filter) } a, b, c, d, tx, ty := geom.elements() level := 0 if filter == graphics.FilterLinear && !img.mipmap.original().IsVolatile() { det := geom.det() if det == 0 { return nil } if math.IsNaN(float64(det)) { return nil } level = graphics.MipmapLevel(det) if level < 0 { panic(fmt.Sprintf("ebiten: level must be >= 0 but %d", level)) } // If the image can be scaled into 0 size, adjust the level. (#839) w, h := bounds.Dx(), bounds.Dy() for level >= 0 { s := 1 << uint(level) if w/s == 0 || h/s == 0 { level-- continue } break } if level < 0 { // As the render source is too small, nothing is rendered. return nil } } if level > 6 { level = 6 } // TODO: Add (*mipmap).drawImage and move the below code. colorm := options.ColorM.impl cr, cg, cb, ca := float32(1), float32(1), float32(1), float32(1) if colorm.ScaleOnly() { body, _ := colorm.UnsafeElements() cr = body[0] cg = body[5] cb = body[10] ca = body[15] colorm = nil } if level == 0 { src := img.mipmap.original() vs := vertexSlice(4) src.PutQuadVertices(vs, bounds.Min.X, bounds.Min.Y, bounds.Max.X, bounds.Max.Y, a, b, c, d, tx, ty, cr, cg, cb, ca) is := graphics.QuadIndices() i.mipmap.original().DrawTriangles(src, vs, is, colorm, mode, filter, graphics.AddressClampToZero) } else if src := img.mipmap.level(bounds, level); src != nil { w, h := src.Size() s := 1 << uint(level) a *= float32(s) b *= float32(s) c *= float32(s) d *= float32(s) vs := vertexSlice(4) src.PutQuadVertices(vs, 0, 0, w, h, a, b, c, d, tx, ty, cr, cg, cb, ca) is := graphics.QuadIndices() i.mipmap.original().DrawTriangles(src, vs, is, colorm, mode, filter, graphics.AddressClampToZero) } i.disposeMipmaps() return nil } // Vertex represents a vertex passed to DrawTriangles. // // Note that this API is experimental. type Vertex struct { // DstX and DstY represents a point on a destination image. DstX float32 DstY float32 // SrcX and SrcY represents a point on a source image. // Be careful that SrcX/SrcY coordinates are on the image's bounds. // This means that a left-upper point of a sub-image might not be (0, 0). SrcX float32 SrcY float32 // ColorR/ColorG/ColorB/ColorA represents color scaling values. // 1 means the original source image color is used. // 0 means a transparent color is used. ColorR float32 ColorG float32 ColorB float32 ColorA float32 } // Address represents a sampler address mode. type Address int const ( // AddressClampToZero means that out-of-range texture coordinates return 0 (transparent). AddressClampToZero Address = Address(graphics.AddressClampToZero) // AddressRepeat means that texture coordinates wrap to the other side of the texture. AddressRepeat Address = Address(graphics.AddressRepeat) ) // DrawTrianglesOptions represents options to render triangles on an image. // // Note that this API is experimental. type DrawTrianglesOptions struct { // ColorM is a color matrix to draw. // The default (zero) value is identity, which doesn't change any color. // ColorM is applied before vertex color scale is applied. ColorM ColorM // CompositeMode is a composite mode to draw. // The default (zero) value is regular alpha blending. CompositeMode CompositeMode // Filter is a type of texture filter. // The default (zero) value is FilterDefault. Filter Filter // Address is a sampler address mode. // The default (zero) value is AddressClampToZero. Address Address } // MaxIndicesNum is the maximum number of indices for DrawTriangles. const MaxIndicesNum = graphics.IndicesNum // DrawTriangles draws a triangle with the specified vertices and their indices. // // If len(indices) is not multiple of 3, DrawTriangles panics. // // If len(indices) is more than MaxIndicesNum, DrawTriangles panics. // // The rule in which DrawTriangles works effectively is same as DrawImage's. // // When the image i is disposed, DrawTriangles does nothing. // // Internal mipmap is not used on DrawTriangles. // // Note that this API is experimental. func (i *Image) DrawTriangles(vertices []Vertex, indices []uint16, img *Image, options *DrawTrianglesOptions) { i.copyCheck() if i.isDisposed() { return } if i.isSubImage() { panic("ebiten: render to a subimage is not implemented (DrawTriangles)") } img.resolvePendingPixels(true) i.resolvePendingPixels(true) if len(indices)%3 != 0 { panic("ebiten: len(indices) % 3 must be 0") } if len(indices) > MaxIndicesNum { panic("ebiten: len(indices) must be <= MaxIndicesNum") } // TODO: Check the maximum value of indices and len(vertices)? if options == nil { options = &DrawTrianglesOptions{} } mode := graphics.CompositeMode(options.CompositeMode) filter := graphics.FilterNearest if options.Filter != FilterDefault { filter = graphics.Filter(options.Filter) } else if img.filter != FilterDefault { filter = graphics.Filter(img.filter) } vs := vertexSlice(len(vertices)) src := img.mipmap.original() r := img.Bounds() for idx, v := range vertices { src.PutVertex(vs[idx*graphics.VertexFloatNum:(idx+1)*graphics.VertexFloatNum], float32(v.DstX), float32(v.DstY), v.SrcX, v.SrcY, float32(r.Min.X), float32(r.Min.Y), float32(r.Max.X), float32(r.Max.Y), v.ColorR, v.ColorG, v.ColorB, v.ColorA) } i.mipmap.original().DrawTriangles(img.mipmap.original(), vs, indices, options.ColorM.impl, mode, filter, graphics.Address(options.Address)) i.disposeMipmaps() } // SubImage returns an image representing the portion of the image p visible through r. The returned value shares pixels with the original image. // // The returned value is always *ebiten.Image. // // If the image is disposed, SubImage returns nil. // // In the current Ebiten implementation, SubImage is available only as a rendering source. func (i *Image) SubImage(r image.Rectangle) image.Image { i.copyCheck() if i.isDisposed() { return nil } img := &Image{ mipmap: i.mipmap, filter: i.filter, } // Keep the original image's reference not to dispose that by GC. if i.isSubImage() { img.original = i.original } else { img.original = i } img.addr = img r = r.Intersect(i.Bounds()) // Need to check Empty explicitly. See the standard image package implementations. if r.Empty() { img.bounds = image.ZR } else { img.bounds = r } return img } // Bounds returns the bounds of the image. func (i *Image) Bounds() image.Rectangle { if i.isDisposed() { panic("ebiten: the image is already disposed") } if !i.isSubImage() { w, h := i.mipmap.original().Size() return image.Rect(0, 0, w, h) } return i.bounds } // ColorModel returns the color model of the image. func (i *Image) ColorModel() color.Model { return color.RGBAModel } // At returns the color of the image at (x, y). // // At loads pixels from GPU to system memory if necessary, which means that At can be slow. // // At always returns a transparent color if the image is disposed. // // Note that important logic should not rely on values returned by At, since // the returned values can include very slight differences between some machines. // // At can't be called outside the main loop (ebiten.Run's updating function) starts (as of version 1.4.0-alpha). func (i *Image) At(x, y int) color.Color { if atomic.LoadInt32(&isRunning) == 0 { panic("ebiten: (*Image).At is not available outside the main loop so far") } if i.isDisposed() { return color.RGBA{} } if i.isSubImage() && !image.Pt(x, y).In(i.bounds) { return color.RGBA{} } i.resolvePendingPixels(true) r, g, b, a := i.mipmap.original().At(x, y) return color.RGBA{r, g, b, a} } // Set sets the color at (x, y). // // Set loads pixels from GPU to system memory if necessary, which means that Set can be slow. // // Set can't be called outside the main loop (ebiten.Run's updating function) starts. // // If the image is disposed, Set does nothing. func (img *Image) Set(x, y int, clr color.Color) { if atomic.LoadInt32(&isRunning) == 0 { panic("ebiten: (*Image).Set is not available outside the main loop so far") } img.copyCheck() if img.isDisposed() { return } if img.isSubImage() && !image.Pt(x, y).In(img.bounds) { return } if img.isSubImage() { img = img.original } w, h := img.Size() if img.pendingPixels == nil { pix := make([]byte, 4*w*h) idx := 0 for j := 0; j < h; j++ { for i := 0; i < w; i++ { r, g, b, a := img.mipmap.original().At(i, j) pix[4*idx] = r pix[4*idx+1] = g pix[4*idx+2] = b pix[4*idx+3] = a idx++ } } img.pendingPixels = pix } r, g, b, a := clr.RGBA() img.pendingPixels[4*(x+y*w)] = byte(r >> 8) img.pendingPixels[4*(x+y*w)+1] = byte(g >> 8) img.pendingPixels[4*(x+y*w)+2] = byte(b >> 8) img.pendingPixels[4*(x+y*w)+3] = byte(a >> 8) } func (i *Image) resolvePendingPixels(draw bool) { if i.isSubImage() { i.original.resolvePendingPixels(draw) return } if i.pendingPixels == nil { return } if !draw { i.pendingPixels = nil return } i.ReplacePixels(i.pendingPixels) i.pendingPixels = nil } // Dispose disposes the image data. After disposing, most of image functions do nothing and returns meaningless values. // // Dispose is useful to save memory. // // When the image is disposed, Dipose does nothing. // // Dipose always return nil as of 1.5.0-alpha. func (i *Image) Dispose() error { i.copyCheck() if i.isDisposed() { return nil } if i.isSubImage() { return nil } i.mipmap.dispose() i.resolvePendingPixels(false) return nil } // ReplacePixels replaces the pixels of the image with p. // // The given p must represent RGBA pre-multiplied alpha values. len(p) must equal to 4 * (image width) * (image height). // // ReplacePixels may be slow (as for implementation, this calls glTexSubImage2D). // // When len(p) is not appropriate, ReplacePixels panics. // // When the image is disposed, ReplacePixels does nothing. // // ReplacePixels always returns nil as of 1.5.0-alpha. func (i *Image) ReplacePixels(p []byte) error { i.copyCheck() if i.isDisposed() { return nil } // TODO: Implement this. if i.isSubImage() { panic("ebiten: render to a subimage is not implemented (ReplacePixels)") } i.resolvePendingPixels(false) s := i.Bounds().Size() if l := 4 * s.X * s.Y; len(p) != l { panic(fmt.Sprintf("ebiten: len(p) was %d but must be %d", len(p), l)) } i.mipmap.original().ReplacePixels(p) i.disposeMipmaps() return nil } // A DrawImageOptions represents options to render an image on an image. type DrawImageOptions struct { // GeoM is a geometry matrix to draw. // The default (zero) value is identify, which draws the image at (0, 0). GeoM GeoM // ColorM is a color matrix to draw. // The default (zero) value is identity, which doesn't change any color. ColorM ColorM // CompositeMode is a composite mode to draw. // The default (zero) value is regular alpha blending. CompositeMode CompositeMode // Filter is a type of texture filter. // The default (zero) value is FilterDefault. // // Filter can also be specified at NewImage* functions, but // specifying filter at DrawImageOptions is recommended (as of 1.7.0-alpha). // // If both Filter specified at NewImage* and DrawImageOptions are FilterDefault, // FilterNearest is used. // If either is FilterDefault and the other is not, the latter is used. // Otherwise, Filter specified at DrawImageOptions is used. Filter Filter // Deprecated (as of 1.5.0-alpha): Use SubImage instead. ImageParts ImageParts // Deprecated (as of 1.1.0-alpha): Use SubImage instead. Parts []ImagePart // Deprecated (as of 1.9.0-alpha): Use SubImage instead. SourceRect *image.Rectangle } // NewImage returns an empty image. // // If width or height is less than 1 or more than device-dependent maximum size, NewImage panics. // // filter argument is just for backward compatibility. // If you are not sure, specify FilterDefault. // // Error returned by NewImage is always nil as of 1.5.0-alpha. func NewImage(width, height int, filter Filter) (*Image, error) { s := shareable.NewImage(width, height) i := &Image{ mipmap: newMipmap(s), filter: filter, } i.addr = i return i, nil } // makeVolatile makes the image 'volatile'. // A volatile image is always cleared at the start of a frame. // // This is suitable for offscreen images that pixels are changed often. // // Regular non-volatile images need to record drawing history or read its pixels from GPU if necessary so that all // the images can be restored automatically from the context lost. However, such recording the drawing history or // reading pixels from GPU are expensive operations. Volatile images can skip such oprations, but the image content // is cleared every frame instead. // // When the image is disposed, makeVolatile does nothing. func (i *Image) makeVolatile() { if i.isDisposed() { return } i.mipmap.orig.MakeVolatile() i.disposeMipmaps() } // NewImageFromImage creates a new image with the given image (source). // // If source's width or height is less than 1 or more than device-dependent maximum size, NewImageFromImage panics. // // filter argument is just for backward compatibility. // If you are not sure, specify FilterDefault. // // Error returned by NewImageFromImage is always nil as of 1.5.0-alpha. func NewImageFromImage(source image.Image, filter Filter) (*Image, error) { size := source.Bounds().Size() width, height := size.X, size.Y s := shareable.NewImage(width, height) i := &Image{ mipmap: newMipmap(s), filter: filter, } i.addr = i _ = i.ReplacePixels(graphics.CopyImage(source)) return i, nil } func newImageWithScreenFramebuffer(width, height int) *Image { i := &Image{ mipmap: newMipmap(shareable.NewScreenFramebufferImage(width, height)), filter: FilterDefault, } i.addr = i return i } // MaxImageSize is deprecated as of 1.7.0-alpha. No replacement so far. // // TODO: Make this replacement (#541) var MaxImageSize = 4096