// Copyright 2018 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package mipmap import ( "fmt" "math" "github.com/hajimehoshi/ebiten/v2/internal/affine" "github.com/hajimehoshi/ebiten/v2/internal/atlas" "github.com/hajimehoshi/ebiten/v2/internal/buffered" "github.com/hajimehoshi/ebiten/v2/internal/graphics" "github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver" "github.com/hajimehoshi/ebiten/v2/internal/shaderir" ) func canUseMipmap(imageType atlas.ImageType) bool { switch imageType { case atlas.ImageTypeRegular, atlas.ImageTypeUnmanaged: return true } return false } // Mipmap is a set of buffered.Image sorted by the order of mipmap level. // The level 0 image is a regular image and higher-level images are used for mipmap. type Mipmap struct { width int height int imageType atlas.ImageType orig *buffered.Image imgs map[int]*buffered.Image } func New(width, height int, imageType atlas.ImageType) *Mipmap { return &Mipmap{ width: width, height: height, orig: buffered.NewImage(width, height, imageType), imageType: imageType, } } func (m *Mipmap) DumpScreenshot(graphicsDriver graphicsdriver.Graphics, name string, blackbg bool) (string, error) { return m.orig.DumpScreenshot(graphicsDriver, name, blackbg) } func (m *Mipmap) WritePixels(pix []byte, x, y, width, height int) { m.orig.WritePixels(pix, x, y, width, height) m.disposeMipmaps() } func (m *Mipmap) ReadPixels(graphicsDriver graphicsdriver.Graphics, pixels []byte, x, y, width, height int) error { return m.orig.ReadPixels(graphicsDriver, pixels, x, y, width, height) } func (m *Mipmap) DrawTriangles(srcs [graphics.ShaderImageCount]*Mipmap, vertices []float32, indices []uint16, colorm affine.ColorM, mode graphicsdriver.CompositeMode, filter graphicsdriver.Filter, address graphicsdriver.Address, dstRegion, srcRegion graphicsdriver.Region, subimageOffsets [graphics.ShaderImageCount - 1][2]float32, shader *Shader, uniforms [][]float32, evenOdd bool, canSkipMipmap bool) { if len(indices) == 0 { return } level := 0 // TODO: Do we need to check all the sources' states of being volatile? if !canSkipMipmap && srcs[0] != nil && canUseMipmap(srcs[0].imageType) { level = math.MaxInt32 for i := 0; i < len(indices)/3; i++ { const n = graphics.VertexFloatCount dx0 := vertices[n*indices[3*i]+0] dy0 := vertices[n*indices[3*i]+1] sx0 := vertices[n*indices[3*i]+2] sy0 := vertices[n*indices[3*i]+3] dx1 := vertices[n*indices[3*i+1]+0] dy1 := vertices[n*indices[3*i+1]+1] sx1 := vertices[n*indices[3*i+1]+2] sy1 := vertices[n*indices[3*i+1]+3] dx2 := vertices[n*indices[3*i+2]+0] dy2 := vertices[n*indices[3*i+2]+1] sx2 := vertices[n*indices[3*i+2]+2] sy2 := vertices[n*indices[3*i+2]+3] if l := mipmapLevelFromDistance(dx0, dy0, dx1, dy1, sx0, sy0, sx1, sy1); level > l { level = l } if l := mipmapLevelFromDistance(dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2); level > l { level = l } if l := mipmapLevelFromDistance(dx2, dy2, dx0, dy0, sx2, sy2, sx0, sy0); level > l { level = l } } if level == math.MaxInt32 { panic("mipmap: level must be calculated at least once but not") } } var s *buffered.Shader if shader != nil { s = shader.shader } var imgs [graphics.ShaderImageCount]*buffered.Image for i, src := range srcs { if src == nil { continue } if level != 0 { if img := src.level(level); img != nil { const n = graphics.VertexFloatCount s := float32(pow2(level)) for i := 0; i < len(vertices)/n; i++ { vertices[i*n+2] /= s vertices[i*n+3] /= s } imgs[i] = img continue } } imgs[i] = src.orig } m.orig.DrawTriangles(imgs, vertices, indices, colorm, mode, filter, address, dstRegion, srcRegion, subimageOffsets, s, uniforms, evenOdd) m.disposeMipmaps() } func (m *Mipmap) setImg(level int, img *buffered.Image) { if m.imgs == nil { m.imgs = map[int]*buffered.Image{} } m.imgs[level] = img } func (m *Mipmap) level(level int) *buffered.Image { if level == 0 { panic("mipmap: level must be non-zero at level") } if !canUseMipmap(m.imageType) { panic("mipmap: mipmap images for a volatile or a screen image is not implemented yet") } if img, ok := m.imgs[level]; ok { return img } var src *buffered.Image var vs []float32 shader := NearestFilterShader switch { case level == 1: src = m.orig vs = graphics.QuadVertices(0, 0, float32(m.width), float32(m.height), 0.5, 0, 0, 0.5, 0, 0, 1, 1, 1, 1) shader = LinearFilterShader case level > 1: src = m.level(level - 1) if src == nil { m.setImg(level, nil) return nil } w := sizeForLevel(m.width, level-1) h := sizeForLevel(m.height, level-1) vs = graphics.QuadVertices(0, 0, float32(w), float32(h), 0.5, 0, 0, 0.5, 0, 0, 1, 1, 1, 1) shader = LinearFilterShader default: panic(fmt.Sprintf("mipmap: invalid level: %d", level)) } is := graphics.QuadIndices() w2 := sizeForLevel(m.width, level-1) h2 := sizeForLevel(m.height, level-1) if w2 == 0 || h2 == 0 { m.setImg(level, nil) return nil } // buffered.NewImage panics with a too big size when actual allocation happens. // 4096 should be a safe size in most environments (#1399). // Unfortunately a precise max image size cannot be obtained here since this requires GPU access. if w2 > 4096 || h2 > 4096 { m.setImg(level, nil) return nil } s := buffered.NewImage(w2, h2, m.imageType) dstRegion := graphicsdriver.Region{ X: 0, Y: 0, Width: float32(w2), Height: float32(h2), } s.DrawTriangles([graphics.ShaderImageCount]*buffered.Image{src}, vs, is, affine.ColorMIdentity{}, graphicsdriver.CompositeModeCopy, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, dstRegion, graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, shader.shader, nil, false) m.setImg(level, s) return m.imgs[level] } func sizeForLevel(x int, level int) int { for i := 0; i < level; i++ { x /= 2 if x == 0 { return 0 } } return x } func (m *Mipmap) MarkDisposed() { m.disposeMipmaps() m.orig.MarkDisposed() m.orig = nil } func (m *Mipmap) disposeMipmaps() { for _, img := range m.imgs { if img != nil { img.MarkDisposed() } } for k := range m.imgs { delete(m.imgs, k) } } // mipmapLevel returns an appropriate mipmap level for the given distance. func mipmapLevelFromDistance(dx0, dy0, dx1, dy1, sx0, sy0, sx1, sy1 float32) int { const maxLevel = 6 d := (dx1-dx0)*(dx1-dx0) + (dy1-dy0)*(dy1-dy0) s := (sx1-sx0)*(sx1-sx0) + (sy1-sy0)*(sy1-sy0) if s == 0 { return 0 } scale := d / s // Scale can be infinite when the specified scale is extremely big (#1398). if math.IsInf(float64(scale), 0) { return 0 } // Scale can be zero when the specified scale is extremely small (#1398). if scale == 0 { return 0 } level := 0 for scale < 0.25 { level++ scale *= 4 } if level > 0 { // If the image can be scaled into 0 size, adjust the level. (#839) w, h := int(sx1-sx0), int(sy1-sy0) for level >= 0 { s := 1 << uint(level) if (w > 0 && w/s == 0) || (h > 0 && h/s == 0) { level-- continue } break } if level < 0 { // As the render source is too small, nothing is rendered. return 0 } } if level > maxLevel { level = maxLevel } return level } func pow2(power int) float32 { x := 1 return float32(x << uint(power)) } type Shader struct { shader *buffered.Shader } func NewShader(ir *shaderir.Program) *Shader { return &Shader{ shader: buffered.NewShader(ir), } } func (s *Shader) MarkDisposed() { s.shader.MarkDisposed() s.shader = nil } var ( NearestFilterShader = &Shader{shader: buffered.NearestFilterShader} LinearFilterShader = &Shader{shader: buffered.LinearFilterShader} )