mirror of
https://github.com/hajimehoshi/ebiten.git
synced 2025-01-18 06:52:02 +01:00
fbf40a4455
Closes #3061
792 lines
20 KiB
Go
792 lines
20 KiB
Go
// Copyright 2019 The Ebiten Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Package vector provides functions for vector graphics rendering.
|
|
//
|
|
// This package is under experiments and the API might be changed with breaking backward compatibility.
|
|
package vector
|
|
|
|
import (
|
|
"math"
|
|
|
|
"github.com/hajimehoshi/ebiten/v2"
|
|
)
|
|
|
|
// Direction represents clockwise or counterclockwise.
|
|
type Direction int
|
|
|
|
const (
|
|
Clockwise Direction = iota
|
|
CounterClockwise
|
|
)
|
|
|
|
type opType int
|
|
|
|
const (
|
|
opTypeMoveTo opType = iota
|
|
opTypeLineTo
|
|
opTypeQuadTo
|
|
opTypeCubicTo
|
|
opTypeClose
|
|
)
|
|
|
|
type op struct {
|
|
typ opType
|
|
p1 point
|
|
p2 point
|
|
p3 point
|
|
}
|
|
|
|
func abs(x float32) float32 {
|
|
if x < 0 {
|
|
return -x
|
|
}
|
|
return x
|
|
}
|
|
|
|
type point struct {
|
|
x float32
|
|
y float32
|
|
}
|
|
|
|
type subpath struct {
|
|
points []point
|
|
closed bool
|
|
}
|
|
|
|
// reset resets the subpath.
|
|
// reset doesn't release the allocated memory so that the memory can be reused.
|
|
func (s *subpath) reset() {
|
|
s.points = s.points[:0]
|
|
s.closed = false
|
|
}
|
|
|
|
func (s subpath) pointCount() int {
|
|
return len(s.points)
|
|
}
|
|
|
|
func (s subpath) lastPoint() point {
|
|
return s.points[len(s.points)-1]
|
|
}
|
|
|
|
func (s *subpath) appendPoint(pt point) {
|
|
if s.closed {
|
|
panic("vector: a closed subpathment cannot append a new point")
|
|
}
|
|
|
|
if len(s.points) > 0 {
|
|
// Do not add a too close point to the last point.
|
|
// This can cause unexpected rendering results.
|
|
if lp := s.lastPoint(); abs(lp.x-pt.x) < 1e-2 && abs(lp.y-pt.y) < 1e-2 {
|
|
return
|
|
}
|
|
}
|
|
|
|
s.points = append(s.points, pt)
|
|
}
|
|
|
|
func (s *subpath) close() {
|
|
if s.closed {
|
|
return
|
|
}
|
|
|
|
s.appendPoint(s.points[0])
|
|
s.closed = true
|
|
}
|
|
|
|
// Path represents a collection of path subpathments.
|
|
type Path struct {
|
|
ops []op
|
|
|
|
subpaths []subpath
|
|
}
|
|
|
|
// reset resets the path.
|
|
// reset doesn't release the allocated memory so that the memory can be reused.
|
|
func (p *Path) reset() {
|
|
p.ops = p.ops[:0]
|
|
p.subpaths = p.subpaths[:0]
|
|
}
|
|
|
|
func (p *Path) appendNewSubpath(pt point) {
|
|
if cap(p.subpaths) > len(p.subpaths) {
|
|
// Reuse the last subpath since the last subpath might have an already allocated slice.
|
|
p.subpaths = p.subpaths[:len(p.subpaths)+1]
|
|
p.subpaths[len(p.subpaths)-1].reset()
|
|
p.subpaths[len(p.subpaths)-1].appendPoint(pt)
|
|
return
|
|
}
|
|
p.subpaths = append(p.subpaths, subpath{
|
|
points: []point{pt},
|
|
})
|
|
}
|
|
|
|
func (p *Path) ensureSubpaths() []subpath {
|
|
if len(p.subpaths) > 0 || len(p.ops) == 0 {
|
|
return p.subpaths
|
|
}
|
|
|
|
var cur point
|
|
for _, op := range p.ops {
|
|
switch op.typ {
|
|
case opTypeMoveTo:
|
|
p.appendNewSubpath(op.p1)
|
|
cur = op.p1
|
|
case opTypeLineTo:
|
|
p.lineTo(op.p1)
|
|
cur = op.p1
|
|
case opTypeQuadTo:
|
|
p.quadTo(cur, op.p1, op.p2, 0)
|
|
cur = op.p2
|
|
case opTypeCubicTo:
|
|
p.cubicTo(cur, op.p1, op.p2, op.p3, 0)
|
|
cur = op.p3
|
|
case opTypeClose:
|
|
p.close()
|
|
cur = point{}
|
|
}
|
|
}
|
|
|
|
return p.subpaths
|
|
}
|
|
|
|
// MoveTo starts a new subpath with the given position (x, y) without adding a subpath,
|
|
func (p *Path) MoveTo(x, y float32) {
|
|
p.subpaths = p.subpaths[:0]
|
|
p.ops = append(p.ops, op{
|
|
typ: opTypeMoveTo,
|
|
p1: point{x: x, y: y},
|
|
})
|
|
}
|
|
|
|
// LineTo adds a line segment to the path, which starts from the last position of the current subpath
|
|
// and ends to the given position (x, y).
|
|
// If p doesn't have any subpaths or the last subpath is closed, LineTo sets (x, y) as the start position of a new subpath.
|
|
func (p *Path) LineTo(x, y float32) {
|
|
p.subpaths = p.subpaths[:0]
|
|
p.ops = append(p.ops, op{
|
|
typ: opTypeLineTo,
|
|
p1: point{x: x, y: y},
|
|
})
|
|
}
|
|
|
|
// QuadTo adds a quadratic Bézier curve to the path.
|
|
// (x1, y1) is the control point, and (x2, y2) is the destination.
|
|
func (p *Path) QuadTo(x1, y1, x2, y2 float32) {
|
|
p.subpaths = p.subpaths[:0]
|
|
p.ops = append(p.ops, op{
|
|
typ: opTypeQuadTo,
|
|
p1: point{x: x1, y: y1},
|
|
p2: point{x: x2, y: y2},
|
|
})
|
|
}
|
|
|
|
// CubicTo adds a cubic Bézier curve to the path.
|
|
// (x1, y1) and (x2, y2) are the control points, and (x3, y3) is the destination.
|
|
func (p *Path) CubicTo(x1, y1, x2, y2, x3, y3 float32) {
|
|
p.subpaths = p.subpaths[:0]
|
|
p.ops = append(p.ops, op{
|
|
typ: opTypeCubicTo,
|
|
p1: point{x: x1, y: y1},
|
|
p2: point{x: x2, y: y2},
|
|
p3: point{x: x3, y: y3},
|
|
})
|
|
}
|
|
|
|
// Close adds a new line from the last position of the current subpath to the first position of the current subpath,
|
|
// and marks the current subpath closed.
|
|
// Following operations for this path will start with a new subpath.
|
|
func (p *Path) Close() {
|
|
p.subpaths = p.subpaths[:0]
|
|
p.ops = append(p.ops, op{
|
|
typ: opTypeClose,
|
|
})
|
|
}
|
|
|
|
func (p *Path) lineTo(pt point) {
|
|
if len(p.subpaths) == 0 || p.subpaths[len(p.subpaths)-1].closed {
|
|
p.appendNewSubpath(pt)
|
|
return
|
|
}
|
|
p.subpaths[len(p.subpaths)-1].appendPoint(pt)
|
|
}
|
|
|
|
// lineForTwoPoints returns parameters for a line passing through p0 and p1.
|
|
func lineForTwoPoints(p0, p1 point) (a, b, c float32) {
|
|
// Line passing through p0 and p1 in the form of ax + by + c = 0
|
|
a = p1.y - p0.y
|
|
b = -(p1.x - p0.x)
|
|
c = (p1.x-p0.x)*p0.y - (p1.y-p0.y)*p0.x
|
|
return
|
|
}
|
|
|
|
// isPointCloseToSegment detects the distance between a segment (x0, y0)-(x1, y1) and a point (x, y) is less than allow.
|
|
// If p0 and p1 are the same, isPointCloseToSegment returns true when the distance between p0 and p is less than allow.
|
|
func isPointCloseToSegment(p, p0, p1 point, allow float32) bool {
|
|
if p0 == p1 {
|
|
return allow*allow >= (p0.x-p.x)*(p0.x-p.x)+(p0.y-p.y)*(p0.y-p.y)
|
|
}
|
|
|
|
a, b, c := lineForTwoPoints(p0, p1)
|
|
|
|
// The distance between a line ax+by+c=0 and (x0, y0) is
|
|
// |ax0 + by0 + c| / √(a² + b²)
|
|
return allow*allow*(a*a+b*b) >= (a*p.x+b*p.y+c)*(a*p.x+b*p.y+c)
|
|
}
|
|
|
|
// crossingPointForTwoLines returns a crossing point for two lines.
|
|
func crossingPointForTwoLines(p00, p01, p10, p11 point) point {
|
|
a0, b0, c0 := lineForTwoPoints(p00, p01)
|
|
a1, b1, c1 := lineForTwoPoints(p10, p11)
|
|
det := a0*b1 - a1*b0
|
|
return point{
|
|
x: (b0*c1 - b1*c0) / det,
|
|
y: (a1*c0 - a0*c1) / det,
|
|
}
|
|
}
|
|
|
|
func (p *Path) quadTo(p0, p1, p2 point, level int) {
|
|
if level > 10 {
|
|
return
|
|
}
|
|
|
|
if isPointCloseToSegment(p1, p0, p2, 0.5) {
|
|
p.lineTo(p2)
|
|
return
|
|
}
|
|
|
|
p01 := point{
|
|
x: (p0.x + p1.x) / 2,
|
|
y: (p0.y + p1.y) / 2,
|
|
}
|
|
p12 := point{
|
|
x: (p1.x + p2.x) / 2,
|
|
y: (p1.y + p2.y) / 2,
|
|
}
|
|
p012 := point{
|
|
x: (p01.x + p12.x) / 2,
|
|
y: (p01.y + p12.y) / 2,
|
|
}
|
|
p.quadTo(p0, p01, p012, level+1)
|
|
p.quadTo(p012, p12, p2, level+1)
|
|
}
|
|
|
|
func (p *Path) cubicTo(p0, p1, p2, p3 point, level int) {
|
|
if level > 10 {
|
|
return
|
|
}
|
|
|
|
if isPointCloseToSegment(p1, p0, p3, 0.5) && isPointCloseToSegment(p2, p0, p3, 0.5) {
|
|
p.lineTo(p3)
|
|
return
|
|
}
|
|
|
|
p01 := point{
|
|
x: (p0.x + p1.x) / 2,
|
|
y: (p0.y + p1.y) / 2,
|
|
}
|
|
p12 := point{
|
|
x: (p1.x + p2.x) / 2,
|
|
y: (p1.y + p2.y) / 2,
|
|
}
|
|
p23 := point{
|
|
x: (p2.x + p3.x) / 2,
|
|
y: (p2.y + p3.y) / 2,
|
|
}
|
|
p012 := point{
|
|
x: (p01.x + p12.x) / 2,
|
|
y: (p01.y + p12.y) / 2,
|
|
}
|
|
p123 := point{
|
|
x: (p12.x + p23.x) / 2,
|
|
y: (p12.y + p23.y) / 2,
|
|
}
|
|
p0123 := point{
|
|
x: (p012.x + p123.x) / 2,
|
|
y: (p012.y + p123.y) / 2,
|
|
}
|
|
p.cubicTo(p0, p01, p012, p0123, level+1)
|
|
p.cubicTo(p0123, p123, p23, p3, level+1)
|
|
}
|
|
|
|
func normalize(p point) point {
|
|
len := float32(math.Hypot(float64(p.x), float64(p.y)))
|
|
return point{x: p.x / len, y: p.y / len}
|
|
}
|
|
|
|
func cross(p0, p1 point) float32 {
|
|
return p0.x*p1.y - p1.x*p0.y
|
|
}
|
|
|
|
func (p *Path) currentPosition() (point, bool) {
|
|
if len(p.ops) == 0 {
|
|
return point{}, false
|
|
}
|
|
op := p.ops[len(p.ops)-1]
|
|
switch op.typ {
|
|
case opTypeMoveTo:
|
|
return op.p1, true
|
|
case opTypeLineTo:
|
|
return op.p1, true
|
|
case opTypeQuadTo:
|
|
return op.p2, true
|
|
case opTypeCubicTo:
|
|
return op.p3, true
|
|
case opTypeClose:
|
|
return point{}, false
|
|
}
|
|
return point{}, false
|
|
}
|
|
|
|
// ArcTo adds an arc curve to the path.
|
|
// (x1, y1) is the first control point, and (x2, y2) is the second control point.
|
|
func (p *Path) ArcTo(x1, y1, x2, y2, radius float32) {
|
|
p0, ok := p.currentPosition()
|
|
if !ok {
|
|
p0 = point{x: x1, y: y1}
|
|
}
|
|
d0 := point{
|
|
x: p0.x - x1,
|
|
y: p0.y - y1,
|
|
}
|
|
d1 := point{
|
|
x: x2 - x1,
|
|
y: y2 - y1,
|
|
}
|
|
if d0 == (point{}) || d1 == (point{}) {
|
|
p.LineTo(x1, y1)
|
|
return
|
|
}
|
|
|
|
d0 = normalize(d0)
|
|
d1 = normalize(d1)
|
|
|
|
// theta is the angle between two vectors d0 and d1.
|
|
theta := math.Acos(float64(d0.x*d1.x + d0.y*d1.y))
|
|
// TODO: When theta is bigger than π/2, the arc should be split into two.
|
|
|
|
// dist is the distance between the control point and the arc's beginning and ending points.
|
|
dist := radius / float32(math.Tan(theta/2))
|
|
|
|
// TODO: What if dist is too big?
|
|
|
|
// (ax0, ay0) is the start of the arc.
|
|
ax0 := x1 + d0.x*dist
|
|
ay0 := y1 + d0.y*dist
|
|
|
|
var cx, cy, a0, a1 float32
|
|
var dir Direction
|
|
if cross(d0, d1) >= 0 {
|
|
cx = ax0 - d0.y*radius
|
|
cy = ay0 + d0.x*radius
|
|
a0 = float32(math.Atan2(float64(-d0.x), float64(d0.y)))
|
|
a1 = float32(math.Atan2(float64(d1.x), float64(-d1.y)))
|
|
dir = CounterClockwise
|
|
} else {
|
|
cx = ax0 + d0.y*radius
|
|
cy = ay0 - d0.x*radius
|
|
a0 = float32(math.Atan2(float64(d0.x), float64(-d0.y)))
|
|
a1 = float32(math.Atan2(float64(-d1.x), float64(d1.y)))
|
|
dir = Clockwise
|
|
}
|
|
p.Arc(cx, cy, radius, a0, a1, dir)
|
|
}
|
|
|
|
// Arc adds an arc to the path.
|
|
// (x, y) is the center of the arc.
|
|
func (p *Path) Arc(x, y, radius, startAngle, endAngle float32, dir Direction) {
|
|
// Adjust the angles.
|
|
var da float64
|
|
if dir == Clockwise {
|
|
for startAngle > endAngle {
|
|
endAngle += 2 * math.Pi
|
|
}
|
|
da = float64(endAngle - startAngle)
|
|
} else {
|
|
for startAngle < endAngle {
|
|
startAngle += 2 * math.Pi
|
|
}
|
|
da = float64(startAngle - endAngle)
|
|
}
|
|
|
|
if da >= 2*math.Pi {
|
|
da = 2 * math.Pi
|
|
if dir == Clockwise {
|
|
endAngle = startAngle + 2*math.Pi
|
|
} else {
|
|
startAngle = endAngle + 2*math.Pi
|
|
}
|
|
}
|
|
|
|
// If the angle is big, splict this into multiple Arc calls.
|
|
if da > math.Pi/2 {
|
|
const delta = math.Pi / 3
|
|
a := float64(startAngle)
|
|
if dir == Clockwise {
|
|
for {
|
|
p.Arc(x, y, radius, float32(a), float32(math.Min(a+delta, float64(endAngle))), dir)
|
|
if a+delta >= float64(endAngle) {
|
|
break
|
|
}
|
|
a += delta
|
|
}
|
|
} else {
|
|
for {
|
|
p.Arc(x, y, radius, float32(a), float32(math.Max(a-delta, float64(endAngle))), dir)
|
|
if a-delta <= float64(endAngle) {
|
|
break
|
|
}
|
|
a -= delta
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
sin0, cos0 := math.Sincos(float64(startAngle))
|
|
x0 := x + radius*float32(cos0)
|
|
y0 := y + radius*float32(sin0)
|
|
sin1, cos1 := math.Sincos(float64(endAngle))
|
|
x1 := x + radius*float32(cos1)
|
|
y1 := y + radius*float32(sin1)
|
|
|
|
p.LineTo(x0, y0)
|
|
|
|
// Calculate the control points for an approximated Bézier curve.
|
|
// See https://learn.microsoft.com/en-us/previous-versions/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/beziers.
|
|
l := radius * float32(math.Tan(da/4)*4/3)
|
|
var cx0, cy0, cx1, cy1 float32
|
|
if dir == Clockwise {
|
|
cx0 = x0 + l*float32(-sin0)
|
|
cy0 = y0 + l*float32(cos0)
|
|
cx1 = x1 + l*float32(sin1)
|
|
cy1 = y1 + l*float32(-cos1)
|
|
} else {
|
|
cx0 = x0 + l*float32(sin0)
|
|
cy0 = y0 + l*float32(-cos0)
|
|
cx1 = x1 + l*float32(-sin1)
|
|
cy1 = y1 + l*float32(cos1)
|
|
}
|
|
p.CubicTo(cx0, cy0, cx1, cy1, x1, y1)
|
|
}
|
|
|
|
func (p *Path) close() {
|
|
if len(p.subpaths) == 0 {
|
|
return
|
|
}
|
|
p.subpaths[len(p.subpaths)-1].close()
|
|
}
|
|
|
|
// AppendVerticesAndIndicesForFilling appends vertices and indices to fill this path and returns them.
|
|
// AppendVerticesAndIndicesForFilling works in a similar way to the built-in append function.
|
|
// If the arguments are nils, AppendVerticesAndIndicesForFilling returns new slices.
|
|
//
|
|
// The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1.
|
|
//
|
|
// The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with FileRuleNonZero or FillRuleEvenOdd
|
|
// in order to render a complex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon.
|
|
//
|
|
// The returned vertices and indices should be rendered with a solid (non-transparent) color with the default Blend (source-over).
|
|
// Otherwise, there is no guarantee about the rendering result.
|
|
func (p *Path) AppendVerticesAndIndicesForFilling(vertices []ebiten.Vertex, indices []uint16) ([]ebiten.Vertex, []uint16) {
|
|
// TODO: Add tests.
|
|
|
|
base := uint16(len(vertices))
|
|
for _, subpath := range p.ensureSubpaths() {
|
|
if subpath.pointCount() < 3 {
|
|
continue
|
|
}
|
|
for i, pt := range subpath.points {
|
|
vertices = append(vertices, ebiten.Vertex{
|
|
DstX: pt.x,
|
|
DstY: pt.y,
|
|
SrcX: 0,
|
|
SrcY: 0,
|
|
ColorR: 1,
|
|
ColorG: 1,
|
|
ColorB: 1,
|
|
ColorA: 1,
|
|
})
|
|
if i < 2 {
|
|
continue
|
|
}
|
|
indices = append(indices, base, base+uint16(i-1), base+uint16(i))
|
|
}
|
|
base += uint16(subpath.pointCount())
|
|
}
|
|
return vertices, indices
|
|
}
|
|
|
|
// LineCap represents the way in which how the ends of the stroke are rendered.
|
|
type LineCap int
|
|
|
|
const (
|
|
LineCapButt LineCap = iota
|
|
LineCapRound
|
|
LineCapSquare
|
|
)
|
|
|
|
// LineJoin represents the way in which how two segments are joined.
|
|
type LineJoin int
|
|
|
|
const (
|
|
LineJoinMiter LineJoin = iota
|
|
LineJoinBevel
|
|
LineJoinRound
|
|
)
|
|
|
|
// StrokeOptions is options to render a stroke.
|
|
type StrokeOptions struct {
|
|
// Width is the stroke width in pixels.
|
|
//
|
|
// The default (zero) value is 0.
|
|
Width float32
|
|
|
|
// LineCap is the way in which how the ends of the stroke are rendered.
|
|
// Line caps are not rendered when the subpath is marked as closed.
|
|
//
|
|
// The default (zero) value is LineCapButt.
|
|
LineCap LineCap
|
|
|
|
// LineJoin is the way in which how two segments are joined.
|
|
//
|
|
// The default (zero) value is LineJoiMiter.
|
|
LineJoin LineJoin
|
|
|
|
// MiterLimit is the miter limit for LineJoinMiter.
|
|
// For details, see https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-miterlimit.
|
|
//
|
|
// The default (zero) value is 0.
|
|
MiterLimit float32
|
|
}
|
|
|
|
// AppendVerticesAndIndicesForStroke appends vertices and indices to render a stroke of this path and returns them.
|
|
// AppendVerticesAndIndicesForStroke works in a similar way to the built-in append function.
|
|
// If the arguments are nils, AppendVerticesAndIndicesForStroke returns new slices.
|
|
//
|
|
// The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1.
|
|
//
|
|
// The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with a solid (non-transparent) color
|
|
// with FillRuleFillAll or FillRuleNonZero, not FileRuleEvenOdd.
|
|
func (p *Path) AppendVerticesAndIndicesForStroke(vertices []ebiten.Vertex, indices []uint16, op *StrokeOptions) ([]ebiten.Vertex, []uint16) {
|
|
if op == nil {
|
|
return vertices, indices
|
|
}
|
|
|
|
var rects [][4]point
|
|
var tmpPath Path
|
|
for _, subpath := range p.ensureSubpaths() {
|
|
if subpath.pointCount() < 2 {
|
|
continue
|
|
}
|
|
|
|
rects = rects[:0]
|
|
for i := 0; i < subpath.pointCount()-1; i++ {
|
|
pt := subpath.points[i]
|
|
|
|
nextPt := subpath.points[i+1]
|
|
dx := nextPt.x - pt.x
|
|
dy := nextPt.y - pt.y
|
|
dist := float32(math.Sqrt(float64(dx*dx + dy*dy)))
|
|
extX := (dy) * op.Width / 2 / dist
|
|
extY := (-dx) * op.Width / 2 / dist
|
|
|
|
rects = append(rects, [4]point{
|
|
{
|
|
x: pt.x + extX,
|
|
y: pt.y + extY,
|
|
},
|
|
{
|
|
x: nextPt.x + extX,
|
|
y: nextPt.y + extY,
|
|
},
|
|
{
|
|
x: pt.x - extX,
|
|
y: pt.y - extY,
|
|
},
|
|
{
|
|
x: nextPt.x - extX,
|
|
y: nextPt.y - extY,
|
|
},
|
|
})
|
|
}
|
|
|
|
for i, rect := range rects {
|
|
idx := uint16(len(vertices))
|
|
for _, pt := range rect {
|
|
vertices = append(vertices, ebiten.Vertex{
|
|
DstX: pt.x,
|
|
DstY: pt.y,
|
|
SrcX: 0,
|
|
SrcY: 0,
|
|
ColorR: 1,
|
|
ColorG: 1,
|
|
ColorB: 1,
|
|
ColorA: 1,
|
|
})
|
|
}
|
|
// All the triangles are rendered in clockwise order to enable FillRuleNonZero (#2833).
|
|
indices = append(indices, idx, idx+1, idx+2, idx+1, idx+3, idx+2)
|
|
|
|
// Add line joints.
|
|
var nextRect [4]point
|
|
if i < len(rects)-1 {
|
|
nextRect = rects[i+1]
|
|
} else if subpath.closed {
|
|
nextRect = rects[0]
|
|
} else {
|
|
continue
|
|
}
|
|
|
|
// c is the center of the 'end' edge of the current rect (= the second point of the segment).
|
|
c := point{
|
|
x: (rect[1].x + rect[3].x) / 2,
|
|
y: (rect[1].y + rect[3].y) / 2,
|
|
}
|
|
|
|
// Note that the Y direction and the angle direction are opposite from math's.
|
|
a0 := float32(math.Atan2(float64(rect[1].y-c.y), float64(rect[1].x-c.x)))
|
|
a1 := float32(math.Atan2(float64(nextRect[0].y-c.y), float64(nextRect[0].x-c.x)))
|
|
da := a1 - a0
|
|
for da < 0 {
|
|
da += 2 * math.Pi
|
|
}
|
|
if da == 0 {
|
|
continue
|
|
}
|
|
|
|
switch op.LineJoin {
|
|
case LineJoinMiter:
|
|
delta := math.Pi - da
|
|
exceed := float32(math.Abs(1/math.Sin(float64(delta/2)))) > op.MiterLimit
|
|
|
|
// Quadrilateral
|
|
tmpPath.reset()
|
|
tmpPath.MoveTo(c.x, c.y)
|
|
if da < math.Pi {
|
|
tmpPath.LineTo(rect[1].x, rect[1].y)
|
|
if !exceed {
|
|
pt := crossingPointForTwoLines(rect[0], rect[1], nextRect[0], nextRect[1])
|
|
tmpPath.LineTo(pt.x, pt.y)
|
|
}
|
|
tmpPath.LineTo(nextRect[0].x, nextRect[0].y)
|
|
} else {
|
|
tmpPath.LineTo(rect[3].x, rect[3].y)
|
|
if !exceed {
|
|
pt := crossingPointForTwoLines(rect[2], rect[3], nextRect[2], nextRect[3])
|
|
tmpPath.LineTo(pt.x, pt.y)
|
|
}
|
|
tmpPath.LineTo(nextRect[2].x, nextRect[2].y)
|
|
}
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
|
|
case LineJoinBevel:
|
|
// Triangle
|
|
tmpPath.reset()
|
|
tmpPath.MoveTo(c.x, c.y)
|
|
if da < math.Pi {
|
|
tmpPath.LineTo(rect[1].x, rect[1].y)
|
|
tmpPath.LineTo(nextRect[0].x, nextRect[0].y)
|
|
} else {
|
|
tmpPath.LineTo(rect[3].x, rect[3].y)
|
|
tmpPath.LineTo(nextRect[2].x, nextRect[2].y)
|
|
}
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
|
|
case LineJoinRound:
|
|
// Arc
|
|
tmpPath.reset()
|
|
tmpPath.MoveTo(c.x, c.y)
|
|
if da < math.Pi {
|
|
tmpPath.Arc(c.x, c.y, op.Width/2, a0, a1, Clockwise)
|
|
} else {
|
|
tmpPath.Arc(c.x, c.y, op.Width/2, a0+math.Pi, a1+math.Pi, CounterClockwise)
|
|
}
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
}
|
|
}
|
|
|
|
if len(rects) == 0 {
|
|
continue
|
|
}
|
|
|
|
// If the subpath is closed, do not render line caps.
|
|
if subpath.closed {
|
|
continue
|
|
}
|
|
|
|
switch op.LineCap {
|
|
case LineCapButt:
|
|
// Do nothing.
|
|
|
|
case LineCapRound:
|
|
startR, endR := rects[0], rects[len(rects)-1]
|
|
{
|
|
c := point{
|
|
x: (startR[0].x + startR[2].x) / 2,
|
|
y: (startR[0].y + startR[2].y) / 2,
|
|
}
|
|
a := float32(math.Atan2(float64(startR[0].y-startR[2].y), float64(startR[0].x-startR[2].x)))
|
|
// Arc
|
|
tmpPath.reset()
|
|
tmpPath.MoveTo(startR[0].x, startR[0].y)
|
|
tmpPath.Arc(c.x, c.y, op.Width/2, a, a+math.Pi, CounterClockwise)
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
}
|
|
{
|
|
c := point{
|
|
x: (endR[1].x + endR[3].x) / 2,
|
|
y: (endR[1].y + endR[3].y) / 2,
|
|
}
|
|
a := float32(math.Atan2(float64(endR[1].y-endR[3].y), float64(endR[1].x-endR[3].x)))
|
|
// Arc
|
|
tmpPath.reset()
|
|
tmpPath.MoveTo(endR[1].x, endR[1].y)
|
|
tmpPath.Arc(c.x, c.y, op.Width/2, a, a+math.Pi, Clockwise)
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
}
|
|
|
|
case LineCapSquare:
|
|
startR, endR := rects[0], rects[len(rects)-1]
|
|
{
|
|
a := math.Atan2(float64(startR[0].y-startR[1].y), float64(startR[0].x-startR[1].x))
|
|
s, c := math.Sincos(a)
|
|
dx, dy := float32(c)*op.Width/2, float32(s)*op.Width/2
|
|
|
|
// Quadrilateral
|
|
tmpPath.reset()
|
|
tmpPath.MoveTo(startR[0].x, startR[0].y)
|
|
tmpPath.LineTo(startR[0].x+dx, startR[0].y+dy)
|
|
tmpPath.LineTo(startR[2].x+dx, startR[2].y+dy)
|
|
tmpPath.LineTo(startR[2].x, startR[2].y)
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
}
|
|
{
|
|
a := math.Atan2(float64(endR[1].y-endR[0].y), float64(endR[1].x-endR[0].x))
|
|
s, c := math.Sincos(a)
|
|
dx, dy := float32(c)*op.Width/2, float32(s)*op.Width/2
|
|
|
|
// Quadrilateral
|
|
tmpPath.reset()
|
|
tmpPath.MoveTo(endR[1].x, endR[1].y)
|
|
tmpPath.LineTo(endR[1].x+dx, endR[1].y+dy)
|
|
tmpPath.LineTo(endR[3].x+dx, endR[3].y+dy)
|
|
tmpPath.LineTo(endR[3].x, endR[3].y)
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
}
|
|
}
|
|
}
|
|
|
|
return vertices, indices
|
|
}
|