ebiten/internal/affine/geom.go
seebs 0b7ba8e573 Do GeoM projection on CPU (#477)
Handling GeoM projection on CPU may seem like a weird choice, given
how fast GPU is, but it pays off:

* You only have to do a very small subset of the actual matrix
  multiply.
* You don't have to construct a matrix in the vertex shader.
* Six fewer float32 values per vertex.
* You do still have to do the matrix computation for each vertex,
  though.

Signed-off-by: Seebs <seebs@seebs.net>
2018-01-14 16:01:55 +09:00

186 lines
3.5 KiB
Go

// Copyright 2014 Hajime Hoshi
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package affine
import (
"math"
)
// GeoMDim is a dimension of a GeoM.
const GeoMDim = 3
// A GeoM represents a matrix to transform geometry when rendering an image.
//
// The initial value is identity.
type GeoM struct {
a float64
b float64
c float64
d float64
tx float64
ty float64
inited bool
}
func (g *GeoM) Reset() {
g.inited = false
}
func (g *GeoM) Apply(x, y float64) (x2, y2 float64) {
if !g.inited {
return x, y
}
return g.a*x + g.b*y + g.tx, g.c*x + g.d*y + g.ty
}
func (g *GeoM) Apply32(x, y float64) (x2, y2 float32) {
if !g.inited {
return float32(x), float32(y)
}
return float32(g.a*x + g.b*y + g.tx), float32(g.c*x + g.d*y + g.ty)
}
func (g *GeoM) Elements() (a, b, c, d, tx, ty float64) {
if !g.inited {
return 1, 0, 0, 1, 0, 0
}
return g.a, g.b, g.c, g.d, g.tx, g.ty
}
func (g *GeoM) init() {
g.a = 1
g.b = 0
g.c = 0
g.d = 1
g.tx = 0
g.ty = 0
g.inited = true
}
// SetElement sets an element at (i, j).
func (g *GeoM) SetElement(i, j int, element float64) {
if !g.inited {
g.init()
}
switch {
case i == 0 && j == 0:
g.a = element
case i == 0 && j == 1:
g.b = element
case i == 0 && j == 2:
g.tx = element
case i == 1 && j == 0:
g.c = element
case i == 1 && j == 1:
g.d = element
case i == 1 && j == 2:
g.ty = element
default:
panic("affine: i or j is out of index")
}
}
// Concat multiplies a geometry matrix with the other geometry matrix.
// This is same as muptiplying the matrix other and the matrix g in this order.
func (g *GeoM) Concat(other *GeoM) {
if !g.inited {
g.init()
}
if !other.inited {
other.init()
}
a, b, c, d, tx, ty := g.a, g.b, g.c, g.d, g.tx, g.ty
g.a = other.a*a + other.b*c
g.b = other.a*b + other.b*d
g.tx = other.a*tx + other.b*ty + other.tx
g.c = other.c*a + other.d*c
g.d = other.c*b + other.d*d
g.ty = other.c*tx + other.d*ty + other.ty
}
// Add is deprecated.
func (g *GeoM) Add(other GeoM) {
if !g.inited {
g.init()
}
if !other.inited {
other.init()
}
g.a += other.a
g.b += other.b
g.c += other.c
g.d += other.d
g.tx += other.tx
g.ty += other.ty
}
// Scale scales the matrix by (x, y).
func (g *GeoM) Scale(x, y float64) {
if !g.inited {
g.a = x
g.b = 0
g.c = 0
g.d = y
g.tx = 0
g.ty = 0
g.inited = true
return
}
g.a *= x
g.b *= x
g.tx *= x
g.c *= y
g.d *= y
g.ty *= y
}
// Translate translates the matrix by (x, y).
func (g *GeoM) Translate(tx, ty float64) {
if !g.inited {
g.a = 1
g.b = 0
g.c = 0
g.d = 1
g.tx = tx
g.ty = ty
g.inited = true
return
}
g.tx += tx
g.ty += ty
}
// Rotate rotates the matrix by theta.
func (g *GeoM) Rotate(theta float64) {
sin, cos := math.Sincos(theta)
if !g.inited {
g.a = cos
g.b = -sin
g.c = sin
g.d = cos
g.tx = 0
g.ty = 0
g.inited = true
return
}
a, b, c, d, tx, ty := g.a, g.b, g.c, g.d, g.tx, g.ty
g.a = cos*a - sin*c
g.b = cos*b - sin*d
g.tx = cos*tx - sin*ty
g.c = sin*a + cos*c
g.d = sin*b + cos*d
g.ty = sin*tx + cos*ty
}