ebiten/internal/restorable/images_test.go
seebs 0b7ba8e573 Do GeoM projection on CPU (#477)
Handling GeoM projection on CPU may seem like a weird choice, given
how fast GPU is, but it pays off:

* You only have to do a very small subset of the actual matrix
  multiply.
* You don't have to construct a matrix in the vertex shader.
* Six fewer float32 values per vertex.
* You do still have to do the matrix computation for each vertex,
  though.

Signed-off-by: Seebs <seebs@seebs.net>
2018-01-14 16:01:55 +09:00

348 lines
8.3 KiB
Go

// Copyright 2017 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package restorable_test
import (
"errors"
"image"
"image/color"
"os"
"testing"
"github.com/hajimehoshi/ebiten"
"github.com/hajimehoshi/ebiten/internal/affine"
"github.com/hajimehoshi/ebiten/internal/graphics"
"github.com/hajimehoshi/ebiten/internal/opengl"
. "github.com/hajimehoshi/ebiten/internal/restorable"
)
func TestMain(m *testing.M) {
EnableRestoringForTesting()
code := 0
regularTermination := errors.New("regular termination")
f := func(screen *ebiten.Image) error {
code = m.Run()
return regularTermination
}
if err := ebiten.Run(f, 320, 240, 1, "Test"); err != nil && err != regularTermination {
panic(err)
}
os.Exit(code)
}
func uint8SliceToColor(b []uint8, index int) color.RGBA {
i := index * 4
return color.RGBA{b[i], b[i+1], b[i+2], b[i+3]}
}
func TestRestore(t *testing.T) {
img0 := NewImage(1, 1, graphics.FilterNearest, false)
// Clear images explicitly.
// In this 'restorable' layer, reused texture might not be cleared.
img0.Fill(0, 0, 0, 0)
defer func() {
img0.Dispose()
}()
clr0 := color.RGBA{0x00, 0x00, 0x00, 0xff}
img0.Fill(clr0.R, clr0.G, clr0.B, clr0.A)
if err := ResolveStaleImages(); err != nil {
t.Fatal(err)
}
if err := Restore(); err != nil {
t.Fatal(err)
}
want := clr0
got := uint8SliceToColor(img0.BasePixelsForTesting(), 0)
if got != want {
t.Errorf("got %v, want %v", got, want)
}
}
func vertices(sw, sh int, x, y int) []float32 {
const a, b, c, d = 1, 0, 0, 1
swf := float32(sw)
shf := float32(sh)
tx := float32(x)
ty := float32(y)
// For the rule of values, see vertices.go.
return []float32{
0 + tx, 0 + ty, 0, 0, 1, 1,
0 + tx, shf + ty, 0, 1, 1, 0,
swf + tx, 0 + ty, 1, 0, 0, 1,
swf + tx, shf + ty, 1, 1, 0, 0,
}
}
func TestRestoreChain(t *testing.T) {
const num = 10
imgs := []*Image{}
for i := 0; i < num; i++ {
img := NewImage(1, 1, graphics.FilterNearest, false)
img.Fill(0, 0, 0, 0)
imgs = append(imgs, img)
}
defer func() {
for _, img := range imgs {
img.Dispose()
}
}()
clr := color.RGBA{0x00, 0x00, 0x00, 0xff}
imgs[0].Fill(clr.R, clr.G, clr.B, clr.A)
for i := 0; i < num-1; i++ {
imgs[i+1].DrawImage(imgs[i], vertices(1, 1, 0, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
}
if err := ResolveStaleImages(); err != nil {
t.Fatal(err)
}
if err := Restore(); err != nil {
t.Fatal(err)
}
want := clr
for i, img := range imgs {
got := uint8SliceToColor(img.BasePixelsForTesting(), 0)
if got != want {
t.Errorf("%d: got %v, want %v", i, got, want)
}
}
}
func TestRestoreOverrideSource(t *testing.T) {
img0 := NewImage(1, 1, graphics.FilterNearest, false)
img0.Fill(0, 0, 0, 0)
img1 := NewImage(1, 1, graphics.FilterNearest, false)
img1.Fill(0, 0, 0, 0)
img2 := NewImage(1, 1, graphics.FilterNearest, false)
img2.Fill(0, 0, 0, 0)
img3 := NewImage(1, 1, graphics.FilterNearest, false)
img3.Fill(0, 0, 0, 0)
defer func() {
img3.Dispose()
img2.Dispose()
img1.Dispose()
img0.Dispose()
}()
clr0 := color.RGBA{0x00, 0x00, 0x00, 0xff}
clr1 := color.RGBA{0x00, 0x00, 0x01, 0xff}
img1.Fill(clr0.R, clr0.G, clr0.B, clr0.A)
img2.DrawImage(img1, vertices(1, 1, 0, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img3.DrawImage(img2, vertices(1, 1, 0, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img0.Fill(clr1.R, clr1.G, clr1.B, clr1.A)
img1.DrawImage(img0, vertices(1, 1, 0, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
if err := ResolveStaleImages(); err != nil {
t.Fatal(err)
}
if err := Restore(); err != nil {
t.Fatal(err)
}
testCases := []struct {
name string
want color.RGBA
got color.RGBA
}{
{
"0",
clr1,
uint8SliceToColor(img0.BasePixelsForTesting(), 0),
},
{
"1",
clr1,
uint8SliceToColor(img1.BasePixelsForTesting(), 0),
},
{
"2",
clr0,
uint8SliceToColor(img2.BasePixelsForTesting(), 0),
},
{
"3",
clr0,
uint8SliceToColor(img3.BasePixelsForTesting(), 0),
},
}
for _, c := range testCases {
if c.got != c.want {
t.Errorf("%s: got %v, want %v", c.name, c.got, c.want)
}
}
}
func TestRestoreComplexGraph(t *testing.T) {
// 0 -> 3
// 1 -> 3
// 1 -> 4
// 2 -> 4
// 2 -> 7
// 3 -> 5
// 3 -> 6
// 3 -> 7
// 4 -> 6
base := image.NewRGBA(image.Rect(0, 0, 4, 1))
base.Pix[0] = 0xff
base.Pix[1] = 0xff
base.Pix[2] = 0xff
base.Pix[3] = 0xff
img0 := NewImageFromImage(base, graphics.FilterNearest)
img1 := NewImageFromImage(base, graphics.FilterNearest)
img2 := NewImageFromImage(base, graphics.FilterNearest)
img3 := NewImage(4, 1, graphics.FilterNearest, false)
img3.Fill(0, 0, 0, 0)
img4 := NewImage(4, 1, graphics.FilterNearest, false)
img4.Fill(0, 0, 0, 0)
img5 := NewImage(4, 1, graphics.FilterNearest, false)
img5.Fill(0, 0, 0, 0)
img6 := NewImage(4, 1, graphics.FilterNearest, false)
img6.Fill(0, 0, 0, 0)
img7 := NewImage(4, 1, graphics.FilterNearest, false)
img7.Fill(0, 0, 0, 0)
defer func() {
img7.Dispose()
img6.Dispose()
img5.Dispose()
img4.Dispose()
img3.Dispose()
img2.Dispose()
img1.Dispose()
img0.Dispose()
}()
img3.DrawImage(img0, vertices(4, 1, 0, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img3.DrawImage(img1, vertices(4, 1, 1, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img4.DrawImage(img1, vertices(4, 1, 1, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img4.DrawImage(img2, vertices(4, 1, 2, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img5.DrawImage(img3, vertices(4, 1, 0, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img6.DrawImage(img3, vertices(4, 1, 0, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img6.DrawImage(img4, vertices(4, 1, 1, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img7.DrawImage(img2, vertices(4, 1, 0, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img7.DrawImage(img3, vertices(4, 1, 2, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
if err := ResolveStaleImages(); err != nil {
t.Fatal(err)
}
if err := Restore(); err != nil {
t.Fatal(err)
}
testCases := []struct {
name string
out string
image *Image
}{
{
"0",
"*---",
img0,
},
{
"1",
"*---",
img1,
},
{
"2",
"*---",
img2,
},
{
"3",
"**--",
img3,
},
{
"4",
"-**-",
img4,
},
{
"5",
"**--",
img5,
},
{
"6",
"****",
img6,
},
{
"7",
"*-**",
img7,
},
}
for _, c := range testCases {
for i := 0; i < 4; i++ {
want := color.RGBA{}
if c.out[i] == '*' {
want = color.RGBA{0xff, 0xff, 0xff, 0xff}
}
got := uint8SliceToColor(c.image.BasePixelsForTesting(), i)
if got != want {
t.Errorf("%s[%d]: got %v, want %v", c.name, i, got, want)
}
}
}
}
func TestRestoreRecursive(t *testing.T) {
base := image.NewRGBA(image.Rect(0, 0, 4, 1))
base.Pix[0] = 0xff
base.Pix[1] = 0xff
base.Pix[2] = 0xff
base.Pix[3] = 0xff
img0 := NewImageFromImage(base, graphics.FilterNearest)
img1 := NewImage(4, 1, graphics.FilterNearest, false)
img1.Fill(0, 0, 0, 0)
defer func() {
img1.Dispose()
img0.Dispose()
}()
img1.DrawImage(img0, vertices(4, 1, 1, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
img0.DrawImage(img1, vertices(4, 1, 1, 0), &affine.ColorM{}, opengl.CompositeModeSourceOver)
if err := ResolveStaleImages(); err != nil {
t.Fatal(err)
}
if err := Restore(); err != nil {
t.Fatal(err)
}
testCases := []struct {
name string
out string
image *Image
}{
{
"0",
"*-*-",
img0,
},
{
"1",
"-*--",
img1,
},
}
for _, c := range testCases {
for i := 0; i < 4; i++ {
want := color.RGBA{}
if c.out[i] == '*' {
want = color.RGBA{0xff, 0xff, 0xff, 0xff}
}
got := uint8SliceToColor(c.image.BasePixelsForTesting(), i)
if got != want {
t.Errorf("%s[%d]: got %v, want %v", c.name, i, got, want)
}
}
}
}
// TODO: How about volatile/screen images?