mirror of
https://github.com/hajimehoshi/ebiten.git
synced 2024-11-14 15:07:26 +01:00
1140 lines
37 KiB
Go
1140 lines
37 KiB
Go
// Copyright 2014 Hajime Hoshi
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package ebiten
|
|
|
|
import (
|
|
"fmt"
|
|
"image"
|
|
"image/color"
|
|
|
|
"github.com/hajimehoshi/ebiten/v2/internal/affine"
|
|
"github.com/hajimehoshi/ebiten/v2/internal/atlas"
|
|
"github.com/hajimehoshi/ebiten/v2/internal/graphics"
|
|
"github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver"
|
|
"github.com/hajimehoshi/ebiten/v2/internal/ui"
|
|
)
|
|
|
|
// Image represents a rectangle set of pixels.
|
|
// The pixel format is alpha-premultiplied RGBA.
|
|
// Image implements the standard image.Image and draw.Image interfaces.
|
|
type Image struct {
|
|
// addr holds self to check copying.
|
|
// See strings.Builder for similar examples.
|
|
addr *Image
|
|
|
|
image *ui.Image
|
|
|
|
bounds image.Rectangle
|
|
original *Image
|
|
|
|
setVerticesCache map[[2]int][4]byte
|
|
}
|
|
|
|
var emptyImage *Image
|
|
|
|
func init() {
|
|
img := NewImage(3, 3)
|
|
img.Fill(color.White)
|
|
emptyImage = img.SubImage(image.Rect(1, 1, 2, 2)).(*Image)
|
|
}
|
|
|
|
func (i *Image) copyCheck() {
|
|
if i.addr != i {
|
|
panic("ebiten: illegal use of non-zero Image copied by value")
|
|
}
|
|
}
|
|
|
|
func (i *Image) resolveSetVerticesCacheIfNeeded() {
|
|
if i.isSubImage() {
|
|
i = i.original
|
|
}
|
|
|
|
if len(i.setVerticesCache) == 0 {
|
|
return
|
|
}
|
|
|
|
l := len(i.setVerticesCache)
|
|
vs := graphics.Vertices(l * 4)
|
|
is := make([]uint16, l*6)
|
|
sx, sy := emptyImage.adjustPositionF32(1, 1)
|
|
var idx int
|
|
for p, c := range i.setVerticesCache {
|
|
dx := float32(p[0])
|
|
dy := float32(p[1])
|
|
|
|
var crf, cgf, cbf, caf float32
|
|
if c[3] != 0 {
|
|
crf = float32(c[0]) / float32(c[3])
|
|
cgf = float32(c[1]) / float32(c[3])
|
|
cbf = float32(c[2]) / float32(c[3])
|
|
caf = float32(c[3]) / 0xff
|
|
}
|
|
|
|
vs[graphics.VertexFloatCount*4*idx] = dx
|
|
vs[graphics.VertexFloatCount*4*idx+1] = dy
|
|
vs[graphics.VertexFloatCount*4*idx+2] = sx
|
|
vs[graphics.VertexFloatCount*4*idx+3] = sy
|
|
vs[graphics.VertexFloatCount*4*idx+4] = crf
|
|
vs[graphics.VertexFloatCount*4*idx+5] = cgf
|
|
vs[graphics.VertexFloatCount*4*idx+6] = cbf
|
|
vs[graphics.VertexFloatCount*4*idx+7] = caf
|
|
vs[graphics.VertexFloatCount*4*idx+8] = dx + 1
|
|
vs[graphics.VertexFloatCount*4*idx+9] = dy
|
|
vs[graphics.VertexFloatCount*4*idx+10] = sx + 1
|
|
vs[graphics.VertexFloatCount*4*idx+11] = sy
|
|
vs[graphics.VertexFloatCount*4*idx+12] = crf
|
|
vs[graphics.VertexFloatCount*4*idx+13] = cgf
|
|
vs[graphics.VertexFloatCount*4*idx+14] = cbf
|
|
vs[graphics.VertexFloatCount*4*idx+15] = caf
|
|
vs[graphics.VertexFloatCount*4*idx+16] = dx
|
|
vs[graphics.VertexFloatCount*4*idx+17] = dy + 1
|
|
vs[graphics.VertexFloatCount*4*idx+18] = sx
|
|
vs[graphics.VertexFloatCount*4*idx+19] = sy + 1
|
|
vs[graphics.VertexFloatCount*4*idx+20] = crf
|
|
vs[graphics.VertexFloatCount*4*idx+21] = cgf
|
|
vs[graphics.VertexFloatCount*4*idx+22] = cbf
|
|
vs[graphics.VertexFloatCount*4*idx+23] = caf
|
|
vs[graphics.VertexFloatCount*4*idx+24] = dx + 1
|
|
vs[graphics.VertexFloatCount*4*idx+25] = dy + 1
|
|
vs[graphics.VertexFloatCount*4*idx+26] = sx + 1
|
|
vs[graphics.VertexFloatCount*4*idx+27] = sy + 1
|
|
vs[graphics.VertexFloatCount*4*idx+28] = crf
|
|
vs[graphics.VertexFloatCount*4*idx+29] = cgf
|
|
vs[graphics.VertexFloatCount*4*idx+30] = cbf
|
|
vs[graphics.VertexFloatCount*4*idx+31] = caf
|
|
|
|
is[6*idx] = uint16(4 * idx)
|
|
is[6*idx+1] = uint16(4*idx + 1)
|
|
is[6*idx+2] = uint16(4*idx + 2)
|
|
is[6*idx+3] = uint16(4*idx + 1)
|
|
is[6*idx+4] = uint16(4*idx + 2)
|
|
is[6*idx+5] = uint16(4*idx + 3)
|
|
|
|
idx++
|
|
}
|
|
i.setVerticesCache = nil
|
|
|
|
srcs := [graphics.ShaderImageCount]*ui.Image{emptyImage.image}
|
|
i.image.DrawTriangles(srcs, vs, is, affine.ColorMIdentity{}, graphicsdriver.CompositeModeCopy, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, i.adjustedRegion(), graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, nil, nil, false, true)
|
|
}
|
|
|
|
// Size returns the size of the image.
|
|
func (i *Image) Size() (width, height int) {
|
|
s := i.Bounds().Size()
|
|
return s.X, s.Y
|
|
}
|
|
|
|
func (i *Image) isDisposed() bool {
|
|
return i.image == nil
|
|
}
|
|
|
|
func (i *Image) isSubImage() bool {
|
|
return i.original != nil
|
|
}
|
|
|
|
// Clear resets the pixels of the image into 0.
|
|
//
|
|
// When the image is disposed, Clear does nothing.
|
|
func (i *Image) Clear() {
|
|
i.Fill(color.Transparent)
|
|
}
|
|
|
|
// Fill fills the image with a solid color.
|
|
//
|
|
// When the image is disposed, Fill does nothing.
|
|
func (i *Image) Fill(clr color.Color) {
|
|
i.copyCheck()
|
|
if i.isDisposed() {
|
|
return
|
|
}
|
|
i.setVerticesCache = nil
|
|
|
|
var crf, cgf, cbf, caf float32
|
|
cr, cg, cb, ca := clr.RGBA()
|
|
if ca != 0 {
|
|
crf = float32(cr) / float32(ca)
|
|
cgf = float32(cg) / float32(ca)
|
|
cbf = float32(cb) / float32(ca)
|
|
caf = float32(ca) / 0xffff
|
|
}
|
|
b := i.Bounds()
|
|
x, y := i.adjustPosition(b.Min.X, b.Min.Y)
|
|
i.image.Fill(crf, cgf, cbf, caf, x, y, b.Dx(), b.Dy())
|
|
}
|
|
|
|
func canSkipMipmap(geom GeoM, filter graphicsdriver.Filter) bool {
|
|
if filter != graphicsdriver.FilterLinear {
|
|
return true
|
|
}
|
|
return geom.det2x2() >= 0.999
|
|
}
|
|
|
|
// DrawImageOptions represents options for DrawImage.
|
|
type DrawImageOptions struct {
|
|
// GeoM is a geometry matrix to draw.
|
|
// The default (zero) value is identity, which draws the image at (0, 0).
|
|
GeoM GeoM
|
|
|
|
// ColorM is a color matrix to draw.
|
|
// The default (zero) value is identity, which doesn't change any color.
|
|
ColorM ColorM
|
|
|
|
// CompositeMode is a composite mode to draw.
|
|
// The default (zero) value is regular alpha blending.
|
|
CompositeMode CompositeMode
|
|
|
|
// Filter is a type of texture filter.
|
|
// The default (zero) value is FilterNearest.
|
|
Filter Filter
|
|
}
|
|
|
|
// adjustPosition converts the position in the *ebiten.Image coordinate to the *ui.Image coordinate.
|
|
func (i *Image) adjustPosition(x, y int) (int, int) {
|
|
if i.isSubImage() {
|
|
or := i.original.Bounds()
|
|
x -= or.Min.X
|
|
y -= or.Min.Y
|
|
return x, y
|
|
}
|
|
|
|
r := i.Bounds()
|
|
x -= r.Min.X
|
|
y -= r.Min.Y
|
|
return x, y
|
|
}
|
|
|
|
// adjustPositionF32 converts the position in the *ebiten.Image coordinate to the *ui.Image coordinate.
|
|
func (i *Image) adjustPositionF32(x, y float32) (float32, float32) {
|
|
if i.isSubImage() {
|
|
or := i.original.Bounds()
|
|
x -= float32(or.Min.X)
|
|
y -= float32(or.Min.Y)
|
|
return x, y
|
|
}
|
|
|
|
r := i.Bounds()
|
|
x -= float32(r.Min.X)
|
|
y -= float32(r.Min.Y)
|
|
return x, y
|
|
}
|
|
|
|
func (i *Image) adjustedRegion() graphicsdriver.Region {
|
|
b := i.Bounds()
|
|
x, y := i.adjustPosition(b.Min.X, b.Min.Y)
|
|
return graphicsdriver.Region{
|
|
X: float32(x),
|
|
Y: float32(y),
|
|
Width: float32(b.Dx()),
|
|
Height: float32(b.Dy()),
|
|
}
|
|
}
|
|
|
|
// DrawImage draws the given image on the image i.
|
|
//
|
|
// DrawImage accepts the options. For details, see the document of
|
|
// DrawImageOptions.
|
|
//
|
|
// For drawing, the pixels of the argument image at the time of this call is
|
|
// adopted. Even if the argument image is mutated after this call, the drawing
|
|
// result is never affected.
|
|
//
|
|
// When the image i is disposed, DrawImage does nothing.
|
|
// When the given image img is disposed, DrawImage panics.
|
|
//
|
|
// When the given image is as same as i, DrawImage panics.
|
|
//
|
|
// DrawImage works more efficiently as batches
|
|
// when the successive calls of DrawImages satisfy the below conditions:
|
|
//
|
|
// - All render targets are same (A in A.DrawImage(B, op))
|
|
// - Either all ColorM element values are same or all the ColorM have only
|
|
// diagonal ('scale') elements
|
|
// - If only (*ColorM).Scale is applied to a ColorM, the ColorM has only
|
|
// diagonal elements. The other ColorM functions might modify the other
|
|
// elements.
|
|
// - All CompositeMode values are same
|
|
// - All Filter values are same
|
|
//
|
|
// Even when all the above conditions are satisfied, multiple draw commands can
|
|
// be used in really rare cases. Ebitengine images usually share an internal
|
|
// automatic texture atlas, but when you consume the atlas, or you create a huge
|
|
// image, those images cannot be on the same texture atlas. In this case, draw
|
|
// commands are separated.
|
|
// Another case is when you use an offscreen as a render source. An offscreen
|
|
// doesn't share the texture atlas with high probability.
|
|
//
|
|
// For more performance tips, see https://ebiten.org/documents/performancetips.html
|
|
func (i *Image) DrawImage(img *Image, options *DrawImageOptions) {
|
|
i.copyCheck()
|
|
|
|
if img.isDisposed() {
|
|
panic("ebiten: the given image to DrawImage must not be disposed")
|
|
}
|
|
if i.isDisposed() {
|
|
return
|
|
}
|
|
|
|
img.resolveSetVerticesCacheIfNeeded()
|
|
i.resolveSetVerticesCacheIfNeeded()
|
|
|
|
// Calculate vertices before locking because the user can do anything in
|
|
// options.ImageParts interface without deadlock (e.g. Call Image functions).
|
|
if options == nil {
|
|
options = &DrawImageOptions{}
|
|
}
|
|
|
|
mode := graphicsdriver.CompositeMode(options.CompositeMode)
|
|
filter := graphicsdriver.Filter(options.Filter)
|
|
|
|
if offsetX, offsetY := i.adjustPosition(0, 0); offsetX != 0 || offsetY != 0 {
|
|
options.GeoM.Translate(float64(offsetX), float64(offsetY))
|
|
}
|
|
a, b, c, d, tx, ty := options.GeoM.elements32()
|
|
|
|
bounds := img.Bounds()
|
|
sx0, sy0 := img.adjustPosition(bounds.Min.X, bounds.Min.Y)
|
|
sx1, sy1 := img.adjustPosition(bounds.Max.X, bounds.Max.Y)
|
|
colorm, cr, cg, cb, ca := colorMToScale(options.ColorM.affineColorM())
|
|
vs := graphics.QuadVertices(float32(sx0), float32(sy0), float32(sx1), float32(sy1), a, b, c, d, tx, ty, cr, cg, cb, ca)
|
|
is := graphics.QuadIndices()
|
|
|
|
srcs := [graphics.ShaderImageCount]*ui.Image{img.image}
|
|
|
|
i.image.DrawTriangles(srcs, vs, is, colorm, mode, filter, graphicsdriver.AddressUnsafe, i.adjustedRegion(), graphicsdriver.Region{}, [graphics.ShaderImageCount - 1][2]float32{}, nil, nil, false, canSkipMipmap(options.GeoM, filter))
|
|
}
|
|
|
|
// Vertex represents a vertex passed to DrawTriangles.
|
|
type Vertex struct {
|
|
// DstX and DstY represents a point on a destination image.
|
|
DstX float32
|
|
DstY float32
|
|
|
|
// SrcX and SrcY represents a point on a source image.
|
|
// Be careful that SrcX/SrcY coordinates are on the image's bounds.
|
|
// This means that a upper-left point of a sub-image might not be (0, 0).
|
|
SrcX float32
|
|
SrcY float32
|
|
|
|
// ColorR/ColorG/ColorB/ColorA represents color scaling values.
|
|
// Their interpretation depends on the concrete draw call used:
|
|
// - DrawTriangles: straight-alpha encoded color multiplier.
|
|
// If ColorA is 0, the vertex is fully transparent and color is ignored.
|
|
// If ColorA is 1, the vertex has the color (ColorR, ColorG, ColorB).
|
|
// Vertex colors are interpolated linearly respecting alpha.
|
|
// - DrawTrianglesShader: arbitrary floating point values sent to the shader.
|
|
// These are interpolated linearly and independently from each other.
|
|
ColorR float32
|
|
ColorG float32
|
|
ColorB float32
|
|
ColorA float32
|
|
}
|
|
|
|
// Address represents a sampler address mode.
|
|
type Address int
|
|
|
|
const (
|
|
// AddressUnsafe means there is no guarantee when the texture coodinates are out of range.
|
|
AddressUnsafe Address = Address(graphicsdriver.AddressUnsafe)
|
|
|
|
// AddressClampToZero means that out-of-range texture coordinates return 0 (transparent).
|
|
AddressClampToZero Address = Address(graphicsdriver.AddressClampToZero)
|
|
|
|
// AddressRepeat means that texture coordinates wrap to the other side of the texture.
|
|
AddressRepeat Address = Address(graphicsdriver.AddressRepeat)
|
|
)
|
|
|
|
// FillRule is the rule whether an overlapped region is rendered with DrawTriangles(Shader).
|
|
type FillRule int
|
|
|
|
const (
|
|
// FillAll indicates all the triangles are rendered regardless of overlaps.
|
|
FillAll FillRule = iota
|
|
|
|
// EvenOdd means that triangles are rendered based on the even-odd rule.
|
|
// If and only if the number of overlappings is odd, the region is rendered.
|
|
EvenOdd
|
|
)
|
|
|
|
// DrawTrianglesOptions represents options for DrawTriangles.
|
|
type DrawTrianglesOptions struct {
|
|
// ColorM is a color matrix to draw.
|
|
// The default (zero) value is identity, which doesn't change any color.
|
|
// ColorM is applied before vertex color scale is applied.
|
|
//
|
|
// If Shader is not nil, ColorM is ignored.
|
|
ColorM ColorM
|
|
|
|
// CompositeMode is a composite mode to draw.
|
|
// The default (zero) value is regular alpha blending.
|
|
CompositeMode CompositeMode
|
|
|
|
// Filter is a type of texture filter.
|
|
// The default (zero) value is FilterNearest.
|
|
Filter Filter
|
|
|
|
// Address is a sampler address mode.
|
|
// The default (zero) value is AddressUnsafe.
|
|
Address Address
|
|
|
|
// FillRule indicates the rule how an overlapped region is rendered.
|
|
//
|
|
// The rule EvenOdd is useful when you want to render a complex polygon.
|
|
// A complex polygon is a non-convex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon.
|
|
// See examples/vector for actual usages.
|
|
//
|
|
// The default (zero) value is FillAll.
|
|
FillRule FillRule
|
|
}
|
|
|
|
// MaxIndicesCount is the maximum number of indices for DrawTriangles and DrawTrianglesShader.
|
|
const MaxIndicesCount = graphics.IndicesCount
|
|
|
|
// MaxIndicesNum is the maximum number of indices for DrawTriangles and DrawTrianglesShader.
|
|
//
|
|
// Deprecated: as of v2.4. Use MaxIndicesCount instead.
|
|
const MaxIndicesNum = graphics.IndicesCount
|
|
|
|
// DrawTriangles draws triangles with the specified vertices and their indices.
|
|
//
|
|
// img is used as a source image. img cannot be nil.
|
|
// If you want to draw triangles with a solid color, use a small white image
|
|
// and adjust the color elements in the vertices. For an actual implementation,
|
|
// see the example 'vector'.
|
|
//
|
|
// Vertex contains color values, which are interpreted as straight-alpha colors.
|
|
//
|
|
// If len(indices) is not multiple of 3, DrawTriangles panics.
|
|
//
|
|
// If len(indices) is more than MaxIndicesCount, DrawTriangles panics.
|
|
//
|
|
// The rule in which DrawTriangles works effectively is same as DrawImage's.
|
|
//
|
|
// When the given image is disposed, DrawTriangles panics.
|
|
//
|
|
// When the image i is disposed, DrawTriangles does nothing.
|
|
func (i *Image) DrawTriangles(vertices []Vertex, indices []uint16, img *Image, options *DrawTrianglesOptions) {
|
|
i.copyCheck()
|
|
|
|
if img != nil && img.isDisposed() {
|
|
panic("ebiten: the given image to DrawTriangles must not be disposed")
|
|
}
|
|
if i.isDisposed() {
|
|
return
|
|
}
|
|
|
|
if len(indices)%3 != 0 {
|
|
panic("ebiten: len(indices) % 3 must be 0")
|
|
}
|
|
if len(indices) > MaxIndicesCount {
|
|
panic("ebiten: len(indices) must be <= MaxIndicesCount")
|
|
}
|
|
// TODO: Check the maximum value of indices and len(vertices)?
|
|
|
|
img.resolveSetVerticesCacheIfNeeded()
|
|
i.resolveSetVerticesCacheIfNeeded()
|
|
|
|
if options == nil {
|
|
options = &DrawTrianglesOptions{}
|
|
}
|
|
|
|
mode := graphicsdriver.CompositeMode(options.CompositeMode)
|
|
|
|
address := graphicsdriver.Address(options.Address)
|
|
var sr graphicsdriver.Region
|
|
if address != graphicsdriver.AddressUnsafe {
|
|
sr = img.adjustedRegion()
|
|
}
|
|
|
|
filter := graphicsdriver.Filter(options.Filter)
|
|
|
|
colorm, cr, cg, cb, ca := colorMToScale(options.ColorM.affineColorM())
|
|
|
|
vs := graphics.Vertices(len(vertices))
|
|
dst := i
|
|
for i, v := range vertices {
|
|
dx, dy := dst.adjustPositionF32(v.DstX, v.DstY)
|
|
vs[i*graphics.VertexFloatCount] = dx
|
|
vs[i*graphics.VertexFloatCount+1] = dy
|
|
sx, sy := img.adjustPositionF32(v.SrcX, v.SrcY)
|
|
vs[i*graphics.VertexFloatCount+2] = sx
|
|
vs[i*graphics.VertexFloatCount+3] = sy
|
|
vs[i*graphics.VertexFloatCount+4] = v.ColorR * cr
|
|
vs[i*graphics.VertexFloatCount+5] = v.ColorG * cg
|
|
vs[i*graphics.VertexFloatCount+6] = v.ColorB * cb
|
|
vs[i*graphics.VertexFloatCount+7] = v.ColorA * ca
|
|
}
|
|
is := make([]uint16, len(indices))
|
|
copy(is, indices)
|
|
|
|
srcs := [graphics.ShaderImageCount]*ui.Image{img.image}
|
|
|
|
i.image.DrawTriangles(srcs, vs, is, colorm, mode, filter, address, i.adjustedRegion(), sr, [graphics.ShaderImageCount - 1][2]float32{}, nil, nil, options.FillRule == EvenOdd, false)
|
|
}
|
|
|
|
// DrawTrianglesShaderOptions represents options for DrawTrianglesShader.
|
|
//
|
|
// This API is experimental.
|
|
type DrawTrianglesShaderOptions struct {
|
|
// CompositeMode is a composite mode to draw.
|
|
// The default (zero) value is regular alpha blending.
|
|
CompositeMode CompositeMode
|
|
|
|
// Uniforms is a set of uniform variables for the shader.
|
|
// The keys are the names of the uniform variables.
|
|
// The values must be float or []float.
|
|
// If the uniform variable type is an array, a vector or a matrix,
|
|
// you have to specify linearly flattened values as a slice.
|
|
// For example, if the uniform variable type is [4]vec4, the number of the slice values will be 16.
|
|
Uniforms map[string]interface{}
|
|
|
|
// Images is a set of the source images.
|
|
// All the images' sizes must be the same.
|
|
Images [4]*Image
|
|
|
|
// FillRule indicates the rule how an overlapped region is rendered.
|
|
//
|
|
// The rule EvenOdd is useful when you want to render a complex polygon.
|
|
// A complex polygon is a non-convex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon.
|
|
// See examples/vector for actual usages.
|
|
//
|
|
// The default (zero) value is FillAll.
|
|
FillRule FillRule
|
|
}
|
|
|
|
func init() {
|
|
var op DrawTrianglesShaderOptions
|
|
if got, want := len(op.Images), graphics.ShaderImageCount; got != want {
|
|
panic(fmt.Sprintf("ebiten: len((DrawTrianglesShaderOptions{}).Images) must be %d but %d", want, got))
|
|
}
|
|
}
|
|
|
|
// DrawTrianglesShader draws triangles with the specified vertices and their indices with the specified shader.
|
|
//
|
|
// Vertex contains color values, which can be interpreted for any purpose by the shader.
|
|
//
|
|
// For the details about the shader, see https://ebiten.org/documents/shader.html.
|
|
//
|
|
// If len(indices) is not multiple of 3, DrawTrianglesShader panics.
|
|
//
|
|
// If len(indices) is more than MaxIndicesCount, DrawTrianglesShader panics.
|
|
//
|
|
// When a specified image is non-nil and is disposed, DrawTrianglesShader panics.
|
|
//
|
|
// When the image i is disposed, DrawTrianglesShader does nothing.
|
|
//
|
|
// This API is experimental.
|
|
func (i *Image) DrawTrianglesShader(vertices []Vertex, indices []uint16, shader *Shader, options *DrawTrianglesShaderOptions) {
|
|
i.copyCheck()
|
|
|
|
if i.isDisposed() {
|
|
return
|
|
}
|
|
|
|
if len(indices)%3 != 0 {
|
|
panic("ebiten: len(indices) % 3 must be 0")
|
|
}
|
|
if len(indices) > MaxIndicesCount {
|
|
panic("ebiten: len(indices) must be <= MaxIndicesCount")
|
|
}
|
|
// TODO: Check the maximum value of indices and len(vertices)?
|
|
|
|
i.resolveSetVerticesCacheIfNeeded()
|
|
|
|
if options == nil {
|
|
options = &DrawTrianglesShaderOptions{}
|
|
}
|
|
|
|
mode := graphicsdriver.CompositeMode(options.CompositeMode)
|
|
|
|
vs := graphics.Vertices(len(vertices))
|
|
dst := i
|
|
src := options.Images[0]
|
|
for i, v := range vertices {
|
|
dx, dy := dst.adjustPositionF32(v.DstX, v.DstY)
|
|
vs[i*graphics.VertexFloatCount] = dx
|
|
vs[i*graphics.VertexFloatCount+1] = dy
|
|
sx, sy := v.SrcX, v.SrcY
|
|
if src != nil {
|
|
sx, sy = src.adjustPositionF32(sx, sy)
|
|
}
|
|
vs[i*graphics.VertexFloatCount+2] = sx
|
|
vs[i*graphics.VertexFloatCount+3] = sy
|
|
vs[i*graphics.VertexFloatCount+4] = v.ColorR
|
|
vs[i*graphics.VertexFloatCount+5] = v.ColorG
|
|
vs[i*graphics.VertexFloatCount+6] = v.ColorB
|
|
vs[i*graphics.VertexFloatCount+7] = v.ColorA
|
|
}
|
|
is := make([]uint16, len(indices))
|
|
copy(is, indices)
|
|
|
|
var imgs [graphics.ShaderImageCount]*ui.Image
|
|
var imgw, imgh int
|
|
for i, img := range options.Images {
|
|
if img == nil {
|
|
continue
|
|
}
|
|
if img.isDisposed() {
|
|
panic("ebiten: the given image to DrawTrianglesShader must not be disposed")
|
|
}
|
|
if i == 0 {
|
|
imgw, imgh = img.Size()
|
|
} else {
|
|
// TODO: Check imgw > 0 && imgh > 0
|
|
if w, h := img.Size(); imgw != w || imgh != h {
|
|
panic("ebiten: all the source images must be the same size with the rectangle")
|
|
}
|
|
}
|
|
img.resolveSetVerticesCacheIfNeeded()
|
|
imgs[i] = img.image
|
|
}
|
|
|
|
var sx, sy int
|
|
var sr graphicsdriver.Region
|
|
if img := options.Images[0]; img != nil {
|
|
b := img.Bounds()
|
|
sx, sy = img.adjustPosition(b.Min.X, b.Min.Y)
|
|
sr = img.adjustedRegion()
|
|
}
|
|
|
|
var offsets [graphics.ShaderImageCount - 1][2]float32
|
|
for i, img := range options.Images[1:] {
|
|
if img == nil {
|
|
continue
|
|
}
|
|
b := img.Bounds()
|
|
x, y := img.adjustPosition(b.Min.X, b.Min.Y)
|
|
// (sx, sy) is the upper-left position of the first image.
|
|
// Calculate the distance between the current image's upper-left position and the first one's.
|
|
offsets[i][0] = float32(x - sx)
|
|
offsets[i][1] = float32(y - sy)
|
|
}
|
|
|
|
i.image.DrawTriangles(imgs, vs, is, affine.ColorMIdentity{}, mode, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, i.adjustedRegion(), sr, offsets, shader.shader, shader.convertUniforms(options.Uniforms), options.FillRule == EvenOdd, false)
|
|
}
|
|
|
|
// DrawRectShaderOptions represents options for DrawRectShader.
|
|
//
|
|
// This API is experimental.
|
|
type DrawRectShaderOptions struct {
|
|
// GeoM is a geometry matrix to draw.
|
|
// The default (zero) value is identity, which draws the rectangle at (0, 0).
|
|
GeoM GeoM
|
|
|
|
// CompositeMode is a composite mode to draw.
|
|
// The default (zero) value is regular alpha blending.
|
|
CompositeMode CompositeMode
|
|
|
|
// Uniforms is a set of uniform variables for the shader.
|
|
// The keys are the names of the uniform variables.
|
|
// The values must be float or []float.
|
|
// If the uniform variable type is an array, a vector or a matrix,
|
|
// you have to specify linearly flattened values as a slice.
|
|
// For example, if the uniform variable type is [4]vec4, the number of the slice values will be 16.
|
|
Uniforms map[string]interface{}
|
|
|
|
// Images is a set of the source images.
|
|
// All the images' sizes must be the same.
|
|
Images [4]*Image
|
|
}
|
|
|
|
func init() {
|
|
var op DrawRectShaderOptions
|
|
if got, want := len(op.Images), graphics.ShaderImageCount; got != want {
|
|
panic(fmt.Sprintf("ebiten: len((DrawRectShaderOptions{}).Images) must be %d but %d", want, got))
|
|
}
|
|
}
|
|
|
|
// DrawRectShader draws a rectangle with the specified width and height with the specified shader.
|
|
//
|
|
// For the details about the shader, see https://ebiten.org/documents/shader.html.
|
|
//
|
|
// When one of the specified image is non-nil and is disposed, DrawRectShader panics.
|
|
//
|
|
// When the image i is disposed, DrawRectShader does nothing.
|
|
//
|
|
// This API is experimental.
|
|
func (i *Image) DrawRectShader(width, height int, shader *Shader, options *DrawRectShaderOptions) {
|
|
i.copyCheck()
|
|
|
|
if i.isDisposed() {
|
|
return
|
|
}
|
|
|
|
i.resolveSetVerticesCacheIfNeeded()
|
|
|
|
if options == nil {
|
|
options = &DrawRectShaderOptions{}
|
|
}
|
|
|
|
mode := graphicsdriver.CompositeMode(options.CompositeMode)
|
|
|
|
var imgs [graphics.ShaderImageCount]*ui.Image
|
|
for i, img := range options.Images {
|
|
if img == nil {
|
|
continue
|
|
}
|
|
if img.isDisposed() {
|
|
panic("ebiten: the given image to DrawRectShader must not be disposed")
|
|
}
|
|
if w, h := img.Size(); width != w || height != h {
|
|
panic("ebiten: all the source images must be the same size with the rectangle")
|
|
}
|
|
img.resolveSetVerticesCacheIfNeeded()
|
|
imgs[i] = img.image
|
|
}
|
|
|
|
var sx, sy int
|
|
var sr graphicsdriver.Region
|
|
if img := options.Images[0]; img != nil {
|
|
b := img.Bounds()
|
|
sx, sy = img.adjustPosition(b.Min.X, b.Min.Y)
|
|
sr = img.adjustedRegion()
|
|
}
|
|
|
|
if offsetX, offsetY := i.adjustPosition(0, 0); offsetX != 0 || offsetY != 0 {
|
|
options.GeoM.Translate(float64(offsetX), float64(offsetY))
|
|
}
|
|
a, b, c, d, tx, ty := options.GeoM.elements32()
|
|
vs := graphics.QuadVertices(float32(sx), float32(sy), float32(sx+width), float32(sy+height), a, b, c, d, tx, ty, 1, 1, 1, 1)
|
|
is := graphics.QuadIndices()
|
|
|
|
var offsets [graphics.ShaderImageCount - 1][2]float32
|
|
for i, img := range options.Images[1:] {
|
|
if img == nil {
|
|
continue
|
|
}
|
|
b := img.Bounds()
|
|
x, y := img.adjustPosition(b.Min.X, b.Min.Y)
|
|
// (sx, sy) is the upper-left position of the first image.
|
|
// Calculate the distance between the current image's upper-left position and the first one's.
|
|
offsets[i][0] = float32(x - sx)
|
|
offsets[i][1] = float32(y - sy)
|
|
}
|
|
|
|
i.image.DrawTriangles(imgs, vs, is, affine.ColorMIdentity{}, mode, graphicsdriver.FilterNearest, graphicsdriver.AddressUnsafe, i.adjustedRegion(), sr, offsets, shader.shader, shader.convertUniforms(options.Uniforms), false, canSkipMipmap(options.GeoM, graphicsdriver.FilterNearest))
|
|
}
|
|
|
|
// SubImage returns an image representing the portion of the image p visible through r.
|
|
// The returned value shares pixels with the original image.
|
|
//
|
|
// The returned value is always *ebiten.Image.
|
|
//
|
|
// If the image is disposed, SubImage returns nil.
|
|
//
|
|
// A sub-image returned by SubImage can be used as a rendering source and a rendering destination.
|
|
// If a sub-image is used as a rendering source, the image is used as if it is a small image.
|
|
// If a sub-image is used as a rendering destination, the region being rendered is clipped.
|
|
func (i *Image) SubImage(r image.Rectangle) image.Image {
|
|
i.copyCheck()
|
|
if i.isDisposed() {
|
|
return nil
|
|
}
|
|
|
|
r = r.Intersect(i.Bounds())
|
|
// Need to check Empty explicitly. See the standard image package implementations.
|
|
if r.Empty() {
|
|
r = image.ZR
|
|
}
|
|
|
|
// Keep the original image's reference not to dispose that by GC.
|
|
var orig = i
|
|
if i.isSubImage() {
|
|
orig = i.original
|
|
}
|
|
|
|
img := &Image{
|
|
image: i.image,
|
|
bounds: r,
|
|
original: orig,
|
|
}
|
|
img.addr = img
|
|
|
|
return img
|
|
}
|
|
|
|
// Bounds returns the bounds of the image.
|
|
//
|
|
// Bounds implements the standard image.Image's Bounds.
|
|
func (i *Image) Bounds() image.Rectangle {
|
|
if i.isDisposed() {
|
|
panic("ebiten: the image is already disposed")
|
|
}
|
|
return i.bounds
|
|
}
|
|
|
|
// ColorModel returns the color model of the image.
|
|
//
|
|
// ColorModel implements the standard image.Image's ColorModel.
|
|
func (i *Image) ColorModel() color.Model {
|
|
return color.RGBAModel
|
|
}
|
|
|
|
// ReadPixels reads the image's pixels from the image.
|
|
//
|
|
// The given pixels represent RGBA pre-multiplied alpha values.
|
|
//
|
|
// ReadPixels loads pixels from GPU to system memory if necessary, which means that ReadPixels can be slow.
|
|
//
|
|
// ReadPixels always sets a transparent color if the image is disposed.
|
|
//
|
|
// len(pixels) must be 4 * (bounds width) * (bounds height).
|
|
// If len(pixels) is not correct, ReadPixels panics.
|
|
//
|
|
// ReadPixels also works on a sub-image.
|
|
//
|
|
// Note that an important logic should not rely on values returned by ReadPixels, since
|
|
// the returned values can include very slight differences between some machines.
|
|
//
|
|
// ReadPixels can't be called outside the main loop (ebiten.Run's updating function) starts.
|
|
func (i *Image) ReadPixels(pixels []byte) {
|
|
b := i.Bounds()
|
|
if got, want := len(pixels), 4*b.Dx()*b.Dy(); got != want {
|
|
panic(fmt.Sprintf("ebiten: len(pixels) must be %d but %d at ReadPixels", want, got))
|
|
}
|
|
|
|
if i.isDisposed() {
|
|
for i := range pixels {
|
|
pixels[i] = 0
|
|
}
|
|
return
|
|
}
|
|
|
|
i.resolveSetVerticesCacheIfNeeded()
|
|
|
|
x, y := i.adjustPosition(b.Min.X, b.Min.Y)
|
|
i.image.ReadPixels(pixels, x, y, b.Dx(), b.Dy())
|
|
}
|
|
|
|
// At returns the color of the image at (x, y).
|
|
//
|
|
// At implements the standard image.Image's At.
|
|
//
|
|
// At loads pixels from GPU to system memory if necessary, which means that At can be slow.
|
|
//
|
|
// At always returns a transparent color if the image is disposed.
|
|
//
|
|
// Note that an important logic should not rely on values returned by At, since
|
|
// the returned values can include very slight differences between some machines.
|
|
//
|
|
// At can't be called outside the main loop (ebiten.Run's updating function) starts.
|
|
func (i *Image) At(x, y int) color.Color {
|
|
r, g, b, a := i.at(x, y)
|
|
return color.RGBA{r, g, b, a}
|
|
}
|
|
|
|
// RGBA64At implements the standard image.RGBA64Image's RGBA64At.
|
|
//
|
|
// RGBA64At loads pixels from GPU to system memory if necessary, which means
|
|
// that RGBA64At can be slow.
|
|
//
|
|
// RGBA64At always returns a transparent color if the image is disposed.
|
|
//
|
|
// Note that an important logic should not rely on values returned by RGBA64At,
|
|
// since the returned values can include very slight differences between some machines.
|
|
//
|
|
// RGBA64At can't be called outside the main loop (ebiten.Run's updating function) starts.
|
|
func (i *Image) RGBA64At(x, y int) color.RGBA64 {
|
|
r, g, b, a := i.at(x, y)
|
|
return color.RGBA64{uint16(r) * 0x101, uint16(g) * 0x101, uint16(b) * 0x101, uint16(a) * 0x101}
|
|
}
|
|
|
|
func (i *Image) at(x, y int) (r, g, b, a byte) {
|
|
if i.isDisposed() {
|
|
return 0, 0, 0, 0
|
|
}
|
|
if !image.Pt(x, y).In(i.Bounds()) {
|
|
return 0, 0, 0, 0
|
|
}
|
|
x, y = i.adjustPosition(x, y)
|
|
if c, ok := i.setVerticesCache[[2]int{x, y}]; ok {
|
|
return c[0], c[1], c[2], c[3]
|
|
}
|
|
var pix [4]byte
|
|
i.image.ReadPixels(pix[:], x, y, 1, 1)
|
|
return pix[0], pix[1], pix[2], pix[3]
|
|
}
|
|
|
|
// Set sets the color at (x, y).
|
|
//
|
|
// Set implements the standard draw.Image's Set.
|
|
//
|
|
// Set loads pixels from GPU to system memory if necessary, which means that Set can be slow.
|
|
//
|
|
// In the current implementation, successive calls of Set invokes loading pixels at most once, so this is efficient.
|
|
//
|
|
// If the image is disposed, Set does nothing.
|
|
func (i *Image) Set(x, y int, clr color.Color) {
|
|
i.copyCheck()
|
|
if i.isDisposed() {
|
|
return
|
|
}
|
|
if !image.Pt(x, y).In(i.Bounds()) {
|
|
return
|
|
}
|
|
if i.isSubImage() {
|
|
i = i.original
|
|
}
|
|
|
|
if i.setVerticesCache == nil {
|
|
i.setVerticesCache = map[[2]int][4]byte{}
|
|
}
|
|
dx, dy := i.adjustPosition(x, y)
|
|
cr, cg, cb, ca := clr.RGBA()
|
|
i.setVerticesCache[[2]int{dx, dy}] = [4]byte{byte(cr / 0x101), byte(cg / 0x101), byte(cb / 0x101), byte(ca / 0x101)}
|
|
// One square requires 6 indices (= 2 triangles).
|
|
if len(i.setVerticesCache) >= graphics.IndicesCount/6 {
|
|
i.resolveSetVerticesCacheIfNeeded()
|
|
}
|
|
}
|
|
|
|
// Dispose disposes the image data.
|
|
// After disposing, most of image functions do nothing and returns meaningless values.
|
|
//
|
|
// Calling Dispose is not mandatory. GC automatically collects internal resources that no objects refer to.
|
|
// However, calling Dispose explicitly is helpful if memory usage matters.
|
|
//
|
|
// If the image is a sub-image, Dispose does nothing.
|
|
//
|
|
// When the image is disposed, Dipose does nothing.
|
|
func (i *Image) Dispose() {
|
|
i.copyCheck()
|
|
|
|
if i.isDisposed() {
|
|
return
|
|
}
|
|
if i.isSubImage() {
|
|
return
|
|
}
|
|
i.image.MarkDisposed()
|
|
i.image = nil
|
|
i.setVerticesCache = nil
|
|
}
|
|
|
|
// WritePixels replaces the pixels of the image.
|
|
//
|
|
// The given pixels are treated as RGBA pre-multiplied alpha values.
|
|
//
|
|
// len(pix) must be 4 * (bounds width) * (bounds height).
|
|
// If len(pix) is not correct, WritePixels panics.
|
|
//
|
|
// WritePixels also works on a sub-image.
|
|
//
|
|
// When the image is disposed, WritePixels does nothing.
|
|
func (i *Image) WritePixels(pixels []byte) {
|
|
i.copyCheck()
|
|
|
|
if i.isDisposed() {
|
|
return
|
|
}
|
|
|
|
i.resolveSetVerticesCacheIfNeeded()
|
|
|
|
r := i.Bounds()
|
|
x, y := i.adjustPosition(r.Min.X, r.Min.Y)
|
|
// Do not need to copy pixels here.
|
|
// * In internal/mipmap, pixels are copied when necessary.
|
|
// * In internal/atlas, pixels are copied to make its paddings.
|
|
i.image.WritePixels(pixels, x, y, r.Dx(), r.Dy())
|
|
}
|
|
|
|
// ReplacePixels replaces the pixels of the image.
|
|
//
|
|
// Deprecated: as of v2.4. Use WritePixels instead.
|
|
func (i *Image) ReplacePixels(pixels []byte) {
|
|
i.WritePixels(pixels)
|
|
}
|
|
|
|
// NewImage returns an empty image.
|
|
//
|
|
// If width or height is less than 1 or more than device-dependent maximum size, NewImage panics.
|
|
//
|
|
// NewImage should be called only when necessary.
|
|
// For example, you should avoid to call NewImage every Update or Draw call.
|
|
// Reusing the same image by Clear is much more efficient than creating a new image.
|
|
//
|
|
// NewImage panics if RunGame already finishes.
|
|
func NewImage(width, height int) *Image {
|
|
return newImage(image.Rect(0, 0, width, height), atlas.ImageTypeRegular)
|
|
}
|
|
|
|
// NewImageOptions represents options for NewImage.
|
|
type NewImageOptions struct {
|
|
// Unmanaged represents whether the image is unmanaged or not.
|
|
// The default (zero) value is false, that means the image is managed.
|
|
//
|
|
// An unmanged image is never on an internal automatic texture atlas.
|
|
// A regular image is a part of an internal texture atlas, and locating them is done automatically in Ebitengine.
|
|
// Unmanaged is useful when you want finer controls over the image for performance and memory reasons.
|
|
Unmanaged bool
|
|
}
|
|
|
|
// NewImageWithOptions returns an empty image with the given bounds and the options.
|
|
//
|
|
// If width or height is less than 1 or more than device-dependent maximum size, NewImageWithOptions panics.
|
|
//
|
|
// The rendering origin position is (0, 0) of the given bounds.
|
|
// If DrawImage is called on a new image created by NewImageOptions,
|
|
// for example, the center of scaling and rotating is (0, 0), that might not be a upper-left position.
|
|
//
|
|
// If options is nil, the default setting is used.
|
|
//
|
|
// NewImageWithOptions should be called only when necessary.
|
|
// For example, you should avoid to call NewImageWithOptions every Update or Draw call.
|
|
// Reusing the same image by Clear is much more efficient than creating a new image.
|
|
//
|
|
// NewImageWithOptions panics if RunGame already finishes.
|
|
func NewImageWithOptions(bounds image.Rectangle, options *NewImageOptions) *Image {
|
|
imageType := atlas.ImageTypeRegular
|
|
if options != nil && options.Unmanaged {
|
|
imageType = atlas.ImageTypeUnmanaged
|
|
}
|
|
return newImage(bounds, imageType)
|
|
}
|
|
|
|
func newImage(bounds image.Rectangle, imageType atlas.ImageType) *Image {
|
|
if isRunGameEnded() {
|
|
panic(fmt.Sprintf("ebiten: NewImage cannot be called after RunGame finishes"))
|
|
}
|
|
|
|
width, height := bounds.Dx(), bounds.Dy()
|
|
if width <= 0 {
|
|
panic(fmt.Sprintf("ebiten: width at NewImage must be positive but %d", width))
|
|
}
|
|
if height <= 0 {
|
|
panic(fmt.Sprintf("ebiten: height at NewImage must be positive but %d", height))
|
|
}
|
|
|
|
i := &Image{
|
|
image: ui.NewImage(width, height, imageType),
|
|
bounds: bounds,
|
|
}
|
|
i.addr = i
|
|
return i
|
|
}
|
|
|
|
// NewImageFromImage creates a new image with the given image (source).
|
|
//
|
|
// If source's width or height is less than 1 or more than device-dependent maximum size, NewImageFromImage panics.
|
|
//
|
|
// NewImageFromImage should be called only when necessary.
|
|
// For example, you should avoid to call NewImageFromImage every Update or Draw call.
|
|
// Reusing the same image by Clear and WritePixels is much more efficient than creating a new image.
|
|
//
|
|
// NewImageFromImage panics if RunGame already finishes.
|
|
//
|
|
// The returned image's upper-left position is always (0, 0). The source's bounds are not respected.
|
|
func NewImageFromImage(source image.Image) *Image {
|
|
return NewImageFromImageWithOptions(source, nil)
|
|
}
|
|
|
|
// NewImageFromImageOptions represents options for NewImageFromImage.
|
|
type NewImageFromImageOptions struct {
|
|
// Unmanaged represents whether the image is unmanaged or not.
|
|
// The default (zero) value is false, that means the image is managed.
|
|
//
|
|
// An unmanged image is never on an internal automatic texture atlas.
|
|
// A regular image is a part of an internal texture atlas, and locating them is done automatically in Ebitengine.
|
|
// Unmanaged is useful when you want finer controls over the image for performance and memory reasons.
|
|
Unmanaged bool
|
|
|
|
// PreserveBounds represents whether the new image's bounds are the same as the given image.
|
|
// The default (zero) value is false, that means the new image's upper-left position is adjusted to (0, 0).
|
|
PreserveBounds bool
|
|
}
|
|
|
|
// NewImageFromImageWithOptions creates a new image with the given image (source) with the given options.
|
|
//
|
|
// If source's width or height is less than 1 or more than device-dependent maximum size, NewImageFromImageWithOptions panics.
|
|
//
|
|
// If options is nil, the default setting is used.
|
|
//
|
|
// NewImageFromImageWithOptions should be called only when necessary.
|
|
// For example, you should avoid to call NewImageFromImageWithOptions every Update or Draw call.
|
|
// Reusing the same image by Clear and WritePixels is much more efficient than creating a new image.
|
|
//
|
|
// NewImageFromImageWithOptions panics if RunGame already finishes.
|
|
func NewImageFromImageWithOptions(source image.Image, options *NewImageFromImageOptions) *Image {
|
|
if options == nil {
|
|
options = &NewImageFromImageOptions{}
|
|
}
|
|
|
|
var r image.Rectangle
|
|
if options.PreserveBounds {
|
|
r = source.Bounds()
|
|
} else {
|
|
size := source.Bounds().Size()
|
|
r = image.Rect(0, 0, size.X, size.Y)
|
|
}
|
|
i := NewImageWithOptions(r, &NewImageOptions{
|
|
Unmanaged: options.Unmanaged,
|
|
})
|
|
|
|
// If the given image is an Ebitengine image, use DrawImage instead of reading pixels from the source.
|
|
// This works even before the game loop runs.
|
|
if source, ok := source.(*Image); ok {
|
|
op := &DrawImageOptions{}
|
|
if options.PreserveBounds {
|
|
b := source.Bounds()
|
|
op.GeoM.Translate(float64(b.Min.X), float64(b.Min.Y))
|
|
}
|
|
i.DrawImage(source, op)
|
|
return i
|
|
}
|
|
|
|
i.WritePixels(imageToBytes(source))
|
|
return i
|
|
}
|
|
|
|
// colorMToScale returns a new color matrix and color sclaes that equal to the given matrix in terms of the effect.
|
|
//
|
|
// If the given matrix is merely a scaling matrix, colorMToScale returns
|
|
// an identity matrix and its scaling factors. This is useful to optimize
|
|
// the rendering speed by avoiding the use of the color matrix and instead
|
|
// multiplying all vertex colors by the scale.
|
|
//
|
|
// NOTE: this is only safe when not using a custom Kage shader,
|
|
// as custom shaders may be using vertex colors for different purposes
|
|
// than colorization. However, currently there are no Ebitengine APIs that
|
|
// support both shaders and color matrices.
|
|
func colorMToScale(colorm affine.ColorM) (newColorM affine.ColorM, r, g, b, a float32) {
|
|
if colorm.IsIdentity() {
|
|
return colorm, 1, 1, 1, 1
|
|
}
|
|
|
|
if !colorm.ScaleOnly() {
|
|
return colorm, 1, 1, 1, 1
|
|
}
|
|
r = colorm.At(0, 0)
|
|
g = colorm.At(1, 1)
|
|
b = colorm.At(2, 2)
|
|
a = colorm.At(3, 3)
|
|
|
|
// Color matrices work on non-premultiplied colors.
|
|
// This color matrix can only make colors darker or equal,
|
|
// and thus can never invoke color clamping.
|
|
// Thus the simpler vertex color scale based shader can be used.
|
|
//
|
|
// Negative color values can become positive and out-of-range
|
|
// after applying to vertex colors below, which can make the min() in the shader kick in.
|
|
//
|
|
// Alpha values smaller than 0, combined with negative vertex colors,
|
|
// can also make the min() kick in, so that shall be ruled out too.
|
|
if r < 0 || g < 0 || b < 0 || a < 0 || r > 1 || g > 1 || b > 1 {
|
|
return colorm, 1, 1, 1, 1
|
|
}
|
|
|
|
return affine.ColorMIdentity{}, r, g, b, a
|
|
}
|