ebiten/internal/shader/stmt.go
2024-04-08 23:43:19 +02:00

911 lines
26 KiB
Go

// Copyright 2020 The Ebiten Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package shader
import (
"fmt"
"go/ast"
gconstant "go/constant"
"go/token"
"strings"
"github.com/hajimehoshi/ebiten/v2/internal/shaderir"
)
func (cs *compileState) forceToInt(node ast.Node, expr *shaderir.Expr) bool {
if !canTruncateToInteger(expr.Const) {
cs.addError(node.Pos(), fmt.Sprintf("constant %s truncated to integer", expr.Const.String()))
return false
}
expr.Const = gconstant.ToInt(expr.Const)
return true
}
func (cs *compileState) parseStmt(block *block, fname string, stmt ast.Stmt, inParams, outParams []variable, returnType shaderir.Type) ([]shaderir.Stmt, bool) {
var stmts []shaderir.Stmt
switch stmt := stmt.(type) {
case *ast.AssignStmt:
switch stmt.Tok {
case token.DEFINE:
if len(stmt.Lhs) != len(stmt.Rhs) && len(stmt.Rhs) != 1 {
cs.addError(stmt.Pos(), "single-value context and multiple-value context cannot be mixed")
return nil, false
}
ss, ok := cs.assign(block, fname, stmt.Pos(), stmt.Lhs, stmt.Rhs, inParams, true)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
case token.ASSIGN:
if len(stmt.Lhs) != len(stmt.Rhs) && len(stmt.Rhs) != 1 {
cs.addError(stmt.Pos(), "single-value context and multiple-value context cannot be mixed")
return nil, false
}
ss, ok := cs.assign(block, fname, stmt.Pos(), stmt.Lhs, stmt.Rhs, inParams, false)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
case token.ADD_ASSIGN, token.SUB_ASSIGN, token.MUL_ASSIGN, token.QUO_ASSIGN, token.REM_ASSIGN, token.AND_ASSIGN, token.OR_ASSIGN, token.XOR_ASSIGN, token.AND_NOT_ASSIGN, token.SHL_ASSIGN, token.SHR_ASSIGN:
rhs, rts, ss, ok := cs.parseExpr(block, fname, stmt.Rhs[0], true)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
lhs, lts, ss, ok := cs.parseExpr(block, fname, stmt.Lhs[0], true)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
if lhs[0].Type == shaderir.UniformVariable {
cs.addError(stmt.Pos(), "a uniform variable cannot be assigned")
return nil, false
}
var op shaderir.Op
switch stmt.Tok {
case token.ADD_ASSIGN:
op = shaderir.Add
case token.SUB_ASSIGN:
op = shaderir.Sub
case token.MUL_ASSIGN:
if lts[0].IsMatrix() || rts[0].IsMatrix() {
op = shaderir.MatrixMul
} else {
op = shaderir.ComponentWiseMul
}
case token.QUO_ASSIGN:
op = shaderir.Div
case token.REM_ASSIGN:
op = shaderir.ModOp
case token.AND_ASSIGN:
op = shaderir.And
case token.OR_ASSIGN:
op = shaderir.Or
case token.XOR_ASSIGN:
op = shaderir.Xor
case token.SHL_ASSIGN:
op = shaderir.LeftShift
case token.SHR_ASSIGN:
op = shaderir.RightShift
default:
cs.addError(stmt.Pos(), fmt.Sprintf("unexpected token: %s", stmt.Tok))
return nil, false
}
if lts[0].Main == rts[0].Main {
if op == shaderir.Div && rts[0].IsMatrix() {
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator / not defined on %s", rts[0].String()))
return nil, false
}
if op == shaderir.And || op == shaderir.Or || op == shaderir.Xor || op == shaderir.LeftShift || op == shaderir.RightShift {
if lts[0].Main != shaderir.Int && !lts[0].IsIntVector() {
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator %s not defined on %s", stmt.Tok, lts[0].String()))
}
if rts[0].Main != shaderir.Int && !rts[0].IsIntVector() {
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator %s not defined on %s", stmt.Tok, rts[0].String()))
}
return nil, false
}
if lts[0].Main == shaderir.Int && rhs[0].Const != nil {
if !cs.forceToInt(stmt, &rhs[0]) {
return nil, false
}
}
} else {
switch lts[0].Main {
case shaderir.Int, shaderir.IVec2, shaderir.IVec3, shaderir.IVec4:
if rts[0].Main != shaderir.Int {
if !rts[0].Equal(&shaderir.Type{}) {
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: mismatched types %s and %s", lts[0].String(), rts[0].String()))
return nil, false
}
if !cs.forceToInt(stmt, &rhs[0]) {
return nil, false
}
}
case shaderir.Float:
if op == shaderir.And || op == shaderir.Or || op == shaderir.Xor || op == shaderir.LeftShift || op == shaderir.RightShift {
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator %s not defined on %s", stmt.Tok, lts[0].String()))
} else if rhs[0].Const != nil &&
(rts[0].Main == shaderir.None || rts[0].Main == shaderir.Float) &&
gconstant.ToFloat(rhs[0].Const).Kind() != gconstant.Unknown {
rhs[0].Const = gconstant.ToFloat(rhs[0].Const)
} else {
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: mismatched types %s and %s", lts[0].String(), rts[0].String()))
return nil, false
}
case shaderir.Vec2, shaderir.Vec3, shaderir.Vec4, shaderir.Mat2, shaderir.Mat3, shaderir.Mat4:
if op == shaderir.And || op == shaderir.Or || op == shaderir.Xor || op == shaderir.LeftShift || op == shaderir.RightShift {
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator %s not defined on %s", stmt.Tok, lts[0].String()))
} else if (op == shaderir.MatrixMul || op == shaderir.Div) &&
(rts[0].Main == shaderir.Float ||
(rhs[0].Const != nil &&
(rts[0].Main == shaderir.None || rts[0].Main == shaderir.Float) &&
gconstant.ToFloat(rhs[0].Const).Kind() != gconstant.Unknown)) {
if rhs[0].Const != nil {
rhs[0].Const = gconstant.ToFloat(rhs[0].Const)
}
} else if op == shaderir.MatrixMul && ((lts[0].Main == shaderir.Vec2 && rts[0].Main == shaderir.Mat2) ||
(lts[0].Main == shaderir.Vec3 && rts[0].Main == shaderir.Mat3) ||
(lts[0].Main == shaderir.Vec4 && rts[0].Main == shaderir.Mat4)) {
// OK
} else if (op == shaderir.MatrixMul || op == shaderir.ComponentWiseMul || lts[0].IsFloatVector()) &&
(rts[0].Main == shaderir.Float ||
(rhs[0].Const != nil &&
(rts[0].Main == shaderir.None || rts[0].Main == shaderir.Float) &&
gconstant.ToFloat(rhs[0].Const).Kind() != gconstant.Unknown)) {
if rhs[0].Const != nil {
rhs[0].Const = gconstant.ToFloat(rhs[0].Const)
}
} else {
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: mismatched types %s and %s", lts[0].String(), rts[0].String()))
return nil, false
}
default:
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: mismatched types %s and %s", lts[0].String(), rts[0].String()))
return nil, false
}
}
if op == shaderir.ModOp && lts[0].Main != shaderir.Int && lts[0].Main != shaderir.IVec2 && lts[0].Main != shaderir.IVec3 && lts[0].Main != shaderir.IVec4 {
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator %% not defined on %s", lts[0].String()))
return nil, false
}
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.Assign,
Exprs: []shaderir.Expr{
lhs[0],
{
Type: shaderir.Binary,
Op: op,
Exprs: []shaderir.Expr{
lhs[0],
rhs[0],
},
},
},
})
default:
cs.addError(stmt.Pos(), fmt.Sprintf("unexpected token: %s", stmt.Tok))
}
case *ast.BlockStmt:
b, ok := cs.parseBlock(block, fname, stmt.List, inParams, outParams, returnType, true)
if !ok {
return nil, false
}
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.BlockStmt,
Blocks: []*shaderir.Block{
b.ir,
},
})
case *ast.DeclStmt:
ss, ok := cs.parseDecl(block, fname, stmt.Decl)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
case *ast.ForStmt:
ss, ok := cs.parseFor(block, fname, stmt, inParams, outParams, returnType, true)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
case *ast.IfStmt:
if stmt.Init != nil {
init := stmt.Init
stmt.Init = nil
b, ok := cs.parseBlock(block, fname, []ast.Stmt{init, stmt}, inParams, outParams, returnType, true)
if !ok {
return nil, false
}
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.BlockStmt,
Blocks: []*shaderir.Block{b.ir},
})
return stmts, true
}
exprs, ts, ss, ok := cs.parseExpr(block, fname, stmt.Cond, true)
if !ok {
return nil, false
}
if len(ts) != 1 || ts[0].Main != shaderir.Bool {
var tss []string
for _, t := range ts {
tss = append(tss, t.String())
}
cs.addError(stmt.Pos(), fmt.Sprintf("if-condition must be bool but: %s", strings.Join(tss, ", ")))
return nil, false
}
stmts = append(stmts, ss...)
var bs []*shaderir.Block
b, ok := cs.parseBlock(block, fname, stmt.Body.List, inParams, outParams, returnType, true)
if !ok {
return nil, false
}
bs = append(bs, b.ir)
if stmt.Else != nil {
switch s := stmt.Else.(type) {
case *ast.BlockStmt:
b, ok := cs.parseBlock(block, fname, s.List, inParams, outParams, returnType, true)
if !ok {
return nil, false
}
bs = append(bs, b.ir)
default:
b, ok := cs.parseBlock(block, fname, []ast.Stmt{s}, inParams, outParams, returnType, true)
if !ok {
return nil, false
}
bs = append(bs, b.ir)
}
}
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.If,
Exprs: exprs,
Blocks: bs,
})
case *ast.IncDecStmt:
exprs, ts, ss, ok := cs.parseExpr(block, fname, stmt.X, true)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
var op shaderir.Op
switch stmt.Tok {
case token.INC:
op = shaderir.Add
case token.DEC:
op = shaderir.Sub
}
var c gconstant.Value
switch {
case ts[0].Main == shaderir.Int, ts[0].IsIntVector():
c = gconstant.MakeInt64(1)
case ts[0].Main == shaderir.Float, ts[0].IsFloatVector():
c = gconstant.MakeFloat64(1)
default:
cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation %s (non-numeric type %s)", stmt.Tok.String(), ts[0].String()))
return nil, false
}
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.Assign,
Exprs: []shaderir.Expr{
exprs[0],
{
Type: shaderir.Binary,
Op: op,
Exprs: []shaderir.Expr{
exprs[0],
{
Type: shaderir.NumberExpr,
Const: c,
},
},
},
},
})
case *ast.ReturnStmt:
if len(stmt.Results) != len(outParams) && len(stmt.Results) != 1 {
// Fragment function does not have to return a value due to discard
if fname != cs.fragmentEntry && !(len(stmt.Results) == 0 && len(outParams) > 0 && outParams[0].name != "") {
// TODO: Check variable shadowings.
// https://go.dev/ref/spec#Return_statements
cs.addError(stmt.Pos(), fmt.Sprintf("the number of returning variables must be %d but %d", len(outParams), len(stmt.Results)))
return nil, false
}
}
var exprs []shaderir.Expr
var types []shaderir.Type
for _, r := range stmt.Results {
es, ts, ss, ok := cs.parseExpr(block, fname, r, true)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
if len(es) > 1 && (len(stmt.Results) > 1 || len(outParams) == 1) {
cs.addError(r.Pos(), "single-value context and multiple-value context cannot be mixed")
return nil, false
}
if len(outParams) > 1 && len(stmt.Results) == 1 {
if len(es) == 1 {
cs.addError(stmt.Pos(), fmt.Sprintf("the number of returning variables must be %d but %d", len(outParams), len(stmt.Results)))
return nil, false
}
if len(es) > 1 && len(es) != len(outParams) {
cs.addError(stmt.Pos(), fmt.Sprintf("the number of returning variables must be %d but %d", len(outParams), len(es)))
return nil, false
}
}
exprs = append(exprs, es...)
types = append(types, ts...)
}
for i, t := range types {
expr := exprs[i]
var outT shaderir.Type
if len(outParams) == 0 {
outT = returnType
} else {
outT = outParams[i].typ
}
if expr.Const != nil {
switch outT.Main {
case shaderir.Bool:
if expr.Const.Kind() != gconstant.Bool {
cs.addError(stmt.Pos(), fmt.Sprintf("cannot use type %s as type %s in return argument", t.String(), &outT))
return nil, false
}
t = shaderir.Type{Main: shaderir.Bool}
case shaderir.Int:
if gconstant.ToInt(expr.Const).Kind() == gconstant.Unknown {
cs.addError(stmt.Pos(), fmt.Sprintf("cannot use type %s as type %s in return argument", t.String(), &outT))
return nil, false
}
expr.Const = gconstant.ToInt(expr.Const)
t = shaderir.Type{Main: shaderir.Int}
case shaderir.Float:
if gconstant.ToFloat(expr.Const).Kind() == gconstant.Unknown {
cs.addError(stmt.Pos(), fmt.Sprintf("cannot use type %s as type %s in return argument", t.String(), &outT))
return nil, false
}
expr.Const = gconstant.ToFloat(expr.Const)
t = shaderir.Type{Main: shaderir.Float}
}
}
if !t.Equal(&outT) {
cs.addError(stmt.Pos(), fmt.Sprintf("cannot use type %s as type %s in return argument", t.String(), &outT))
return nil, false
}
if len(outParams) > 0 {
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.Assign,
Exprs: []shaderir.Expr{
{
Type: shaderir.LocalVariable,
Index: len(inParams) + i,
},
expr,
},
})
} else {
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.Return,
Exprs: []shaderir.Expr{expr},
})
// When a return type is specified, there should be only one expr here.
break
}
}
if len(outParams) > 0 {
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.Return,
})
}
case *ast.BranchStmt:
switch stmt.Tok {
case token.BREAK:
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.Break,
})
case token.CONTINUE:
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.Continue,
})
default:
cs.addError(stmt.Pos(), fmt.Sprintf("invalid token: %s", stmt.Tok))
return nil, false
}
case *ast.ExprStmt:
if _, ok := stmt.X.(*ast.CallExpr); !ok {
cs.addError(stmt.Pos(), "the statement is evaluated but not used")
return nil, false
}
exprs, _, ss, ok := cs.parseExpr(block, fname, stmt.X, true)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
for _, expr := range exprs {
// There can be a non-call expr like LocalVariable expressions.
// These are necessary to be used as arguments for an outside function callers.
if expr.Type != shaderir.Call {
continue
}
if expr.Exprs[0].Type == shaderir.BuiltinFuncExpr {
cs.addError(stmt.Pos(), "the statement is evaluated but not used")
return nil, false
}
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.ExprStmt,
Exprs: []shaderir.Expr{expr},
})
}
default:
cs.addError(stmt.Pos(), fmt.Sprintf("unexpected statement: %#v", stmt))
return nil, false
}
return stmts, true
}
func (cs *compileState) assign(block *block, fname string, pos token.Pos, lhs, rhs []ast.Expr, inParams []variable, define bool) ([]shaderir.Stmt, bool) {
var stmts []shaderir.Stmt
var rhsExprs []shaderir.Expr
var rhsTypes []shaderir.Type
allblank := true
if len(lhs) == len(rhs) {
for i, e := range lhs {
// Prase RHS first for the order of the statements.
r, rts, ss, ok := cs.parseExpr(block, fname, rhs[i], true)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
if define {
if _, ok := e.(*ast.Ident); !ok {
cs.addError(pos, "non-name on the left side of :=")
return nil, false
}
name := e.(*ast.Ident).Name
if name != "_" {
for _, v := range block.vars {
if v.name == name {
cs.addError(pos, fmt.Sprintf("duplicated local variable name: %s", name))
return nil, false
}
}
}
ts, ok := cs.functionReturnTypes(block, rhs[i])
if !ok {
ts = rts
}
if len(ts) > 1 {
cs.addError(pos, "single-value context and multiple-value context cannot be mixed")
return nil, false
}
t := ts[0]
if t.Main == shaderir.None {
t = toDefaultType(r[0].Const)
}
block.addNamedLocalVariable(name, t, e.Pos())
}
if len(r) > 1 {
cs.addError(pos, "single-value context and multiple-value context cannot be mixed")
return nil, false
}
l, lts, ss, ok := cs.parseExpr(block, fname, lhs[i], false)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
if len(l) != len(r) {
if len(r) == 0 {
cs.addError(pos, "right-hand side (no value) used as value")
} else {
cs.addError(pos, fmt.Sprintf("assignment mismatch: %d variables but the right-hand side has %d values", len(l), len(r)))
}
return nil, false
}
if l[0].Type == shaderir.Blank {
continue
}
var isAssignmentForbidden func(e *shaderir.Expr) bool
isAssignmentForbidden = func(e *shaderir.Expr) bool {
switch e.Type {
case shaderir.UniformVariable:
return true
case shaderir.LocalVariable:
if fname == cs.vertexEntry || fname == cs.fragmentEntry {
return e.Index < len(inParams)
}
case shaderir.FieldSelector:
return isAssignmentForbidden(&e.Exprs[0])
case shaderir.Index:
return isAssignmentForbidden(&e.Exprs[0])
}
return false
}
if isAssignmentForbidden(&l[0]) {
cs.addError(pos, "a uniform variable cannot be assigned")
return nil, false
}
allblank = false
for i := range lts {
if !canAssign(&lts[i], &rts[i], r[i].Const) {
cs.addError(pos, fmt.Sprintf("cannot use type %s as type %s in variable declaration", rts[i].String(), lts[i].String()))
return nil, false
}
switch lts[0].Main {
case shaderir.Int:
r[i].Const = gconstant.ToInt(r[i].Const)
case shaderir.Float:
r[i].Const = gconstant.ToFloat(r[i].Const)
}
}
if len(lhs) == 1 {
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.Assign,
Exprs: []shaderir.Expr{l[0], r[0]},
})
} else {
// For variable swapping, use temporary variables.
t := rts[0]
if t.Main == shaderir.None {
t = toDefaultType(r[0].Const)
}
block.vars = append(block.vars, variable{
typ: t,
})
idx := block.totalLocalVariableCount() - 1
stmts = append(stmts,
shaderir.Stmt{
Type: shaderir.Assign,
Exprs: []shaderir.Expr{
{
Type: shaderir.LocalVariable,
Index: idx,
},
r[0],
},
},
shaderir.Stmt{
Type: shaderir.Assign,
Exprs: []shaderir.Expr{
l[0],
{
Type: shaderir.LocalVariable,
Index: idx,
},
},
})
}
}
} else {
var ss []shaderir.Stmt
var ok bool
rhsExprs, rhsTypes, ss, ok = cs.parseExpr(block, fname, rhs[0], true)
if !ok {
return nil, false
}
if len(lhs) != len(rhsExprs) {
cs.addError(pos, fmt.Sprintf("assignment mismatch: %d variables but %d", len(lhs), len(rhsExprs)))
return nil, false
}
stmts = append(stmts, ss...)
for i, e := range lhs {
if define {
if _, ok := e.(*ast.Ident); !ok {
cs.addError(pos, "non-name on the left side of :=")
return nil, false
}
name := e.(*ast.Ident).Name
if name != "_" {
for _, v := range block.vars {
if v.name == name {
cs.addError(pos, fmt.Sprintf("duplicated local variable name: %s", name))
return nil, false
}
}
}
t := rhsTypes[i]
if t.Main == shaderir.None {
// TODO: This is to determine a type when the rhs values are constants (not literals),
// but there are no actual cases when len(lhs) != len(rhs). Is this correct?
t = toDefaultType(rhsExprs[i].Const)
}
block.addNamedLocalVariable(name, t, e.Pos())
}
l, lts, ss, ok := cs.parseExpr(block, fname, lhs[i], false)
if !ok {
return nil, false
}
stmts = append(stmts, ss...)
if len(l) != 1 {
cs.addError(pos, fmt.Sprintf("unexpected count of types in lhs: %d", len(l)))
return nil, false
}
if len(lts) != 1 {
cs.addError(pos, fmt.Sprintf("unexpected count of expressions in lhs: %d", len(l)))
return nil, false
}
if l[0].Type == shaderir.Blank {
continue
}
allblank = false
if !canAssign(&lts[0], &rhsTypes[i], rhsExprs[i].Const) {
cs.addError(pos, fmt.Sprintf("cannot use type %s as type %s in variable declaration", rhsTypes[i].String(), lts[0].String()))
return nil, false
}
stmts = append(stmts, shaderir.Stmt{
Type: shaderir.Assign,
Exprs: []shaderir.Expr{l[0], rhsExprs[i]},
})
}
}
if define && allblank {
cs.addError(pos, "no new variables on left side of :=")
return nil, false
}
return stmts, true
}
func toDefaultType(v gconstant.Value) shaderir.Type {
switch v.Kind() {
case gconstant.Bool:
return shaderir.Type{Main: shaderir.Bool}
case gconstant.Int:
return shaderir.Type{Main: shaderir.Int}
case gconstant.Float:
return shaderir.Type{Main: shaderir.Float}
}
// TODO: Should this be an error?
return shaderir.Type{}
}
func canAssign(lt *shaderir.Type, rt *shaderir.Type, rc gconstant.Value) bool {
if lt.Equal(rt) {
return true
}
if rc == nil {
return false
}
if !rt.Equal(&shaderir.Type{}) {
return false
}
switch lt.Main {
case shaderir.Bool:
return rc.Kind() == gconstant.Bool
case shaderir.Int:
return gconstant.ToInt(rc).Kind() != gconstant.Unknown
case shaderir.Float:
return gconstant.ToFloat(rc).Kind() != gconstant.Unknown
}
return false
}
func (cs *compileState) parseFor(block *block, fname string, stmt *ast.ForStmt, inParams, outParams []variable, returnType shaderir.Type, checkLocalVariableUsage bool) ([]shaderir.Stmt, bool) {
msg := "for-statement must follow this format: for (varname) := (constant); (varname) (op) (constant); (varname) (op) (constant) { ..."
if stmt.Init == nil {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if stmt.Cond == nil {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if stmt.Post == nil {
cs.addError(stmt.Pos(), msg)
return nil, false
}
// Create a new pseudo block for the initial statement, so that the counter variable belongs to the
// new pseudo block for each for-loop. Without this, the same-named counter variables in different
// for-loops confuses the parser.
pseudoBlock, ok := cs.parseBlock(block, fname, []ast.Stmt{stmt.Init}, inParams, outParams, returnType, false)
if !ok {
return nil, false
}
ss := pseudoBlock.ir.Stmts
if len(ss) != 1 {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if ss[0].Type != shaderir.Assign {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if ss[0].Exprs[0].Type != shaderir.LocalVariable {
cs.addError(stmt.Pos(), msg)
return nil, false
}
varidx := ss[0].Exprs[0].Index
if ss[0].Exprs[1].Const == nil {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if len(pseudoBlock.vars) != 1 {
cs.addError(stmt.Pos(), msg)
return nil, false
}
vartype := pseudoBlock.vars[0].typ
init := ss[0].Exprs[1].Const
exprs, ts, ss, ok := cs.parseExpr(pseudoBlock, fname, stmt.Cond, true)
if !ok {
return nil, false
}
if len(exprs) != 1 {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if len(ts) != 1 || ts[0].Main != shaderir.Bool {
cs.addError(stmt.Pos(), "for-statement's condition must be bool")
return nil, false
}
if len(ss) != 0 {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if exprs[0].Type != shaderir.Binary {
cs.addError(stmt.Pos(), msg)
return nil, false
}
op := exprs[0].Op
if op != shaderir.LessThanOp && op != shaderir.LessThanEqualOp && op != shaderir.GreaterThanOp && op != shaderir.GreaterThanEqualOp && op != shaderir.EqualOp && op != shaderir.NotEqualOp {
cs.addError(stmt.Pos(), "for-statement's condition must have one of these operators: <, <=, >, >=, ==, !=")
return nil, false
}
if exprs[0].Exprs[0].Type != shaderir.LocalVariable {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if exprs[0].Exprs[0].Index != varidx {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if exprs[0].Exprs[1].Const == nil {
cs.addError(stmt.Pos(), msg)
return nil, false
}
end := exprs[0].Exprs[1].Const
postSs, ok := cs.parseStmt(pseudoBlock, fname, stmt.Post, inParams, outParams, returnType)
if !ok {
return nil, false
}
if len(postSs) != 1 {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if postSs[0].Type != shaderir.Assign {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if postSs[0].Exprs[0].Type != shaderir.LocalVariable {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if postSs[0].Exprs[0].Index != varidx {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if postSs[0].Exprs[1].Type != shaderir.Binary {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if postSs[0].Exprs[1].Exprs[0].Type != shaderir.LocalVariable {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if postSs[0].Exprs[1].Exprs[0].Index != varidx {
cs.addError(stmt.Pos(), msg)
return nil, false
}
if postSs[0].Exprs[1].Exprs[1].Const == nil {
cs.addError(stmt.Pos(), msg)
return nil, false
}
delta := postSs[0].Exprs[1].Exprs[1].Const
switch postSs[0].Exprs[1].Op {
case shaderir.Add:
case shaderir.Sub:
delta = gconstant.UnaryOp(token.SUB, delta, 0)
default:
cs.addError(stmt.Pos(), "for-statement's post statement must have one of these operators: +=, -=, ++, --")
return nil, false
}
b, ok := cs.parseBlock(pseudoBlock, fname, []ast.Stmt{stmt.Body}, inParams, outParams, returnType, true)
if !ok {
return nil, false
}
bodyir := b.ir
for len(bodyir.Stmts) == 1 && bodyir.Stmts[0].Type == shaderir.BlockStmt {
bodyir = bodyir.Stmts[0].Blocks[0]
}
// As the pseudo block is not actually used, copy the variable part to the actual block.
// This must be done after parsing the for-loop is done, or the duplicated variables confuses the
// parsing.
v := pseudoBlock.vars[0]
v.forLoopCounter = true
block.vars = append(block.vars, v)
return []shaderir.Stmt{
{
Type: shaderir.For,
Blocks: []*shaderir.Block{bodyir},
ForVarType: vartype,
ForVarIndex: varidx,
ForInit: init,
ForEnd: end,
ForOp: op,
ForDelta: delta,
},
}, true
}